پایان نامه بررسی چگونگی استقرار مهندسی مجدد صنعت بانکداری ایران با رویکرد استراتژیک در راستای بهبود فضای کسب و کار

 متن کامل پایان نامه مقطع کارشناسی ارشد رشته مدیریت

واحد نراق

پایان نامه برای دریافت درجه کارشناسی ارشد«M.A»

مدیریت بازرگانی

گرایش: مالی

عنوان :

بررسی چگونگی استقرار مهندسی مجدد صنعت بانکداری ایران با رویکرد استراتژیک در راستای بهبود فضای کسب و کار

استاد مشاور:

دکتر محسن رسولیان

 تابستان 1391

(در فایل دانلودی نام نویسنده و استاد راهنما موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب

عنوان                                                                                                         صفحه

چکیده………………………………………….. 1

مقدمه………………………………………….. 2

 

فصل اول- کلیات پژوهش…………………………….. 4

1-1 مقدمه………………………………………. 5

1-2 بیان مسأله………………………………….. 6

1-3 اهمیت و ضرورت تحقیق………………………….. 9

1-4 اهدافتحقیق………………………………….. 10

1-4-1 هدفاصلیتحقیق………………………………. 10

1-4-2 اهداففرعیتحقیق…………………………….. 10

1-5 فرضیه های تحقیق……………………………… 11

1-5-1 فرضیه اصلی………………………………… 11

1-5-2 فرضیه های فرعی ……………………………. 11

1-6 تعریف واژگان تخصصی ………………………………………………………………………………………………………………… 11

1-7خلاصه………………………………………… 12

فصل دوم – ادبیات تحقیق…………………………… 13

2-1 مقدمه………………………………………. 14

2-2 مهندسی مجدد فرآیند کسب و کار………………….. 15

2-3تاریخچه……………………………………… 19

2-4 اهداف مهندسی مجدد……………………………. 20

2-5 اصول و قواعد مهندسی مجدد……………………… 21

2-6 تفاوت مهندسی مجدد و معکوس…………………….. 24

2-7 تفاوت مهندسی مجدد و طراحی مجدد ……………….. 24

2-8 ویژگی های کلی مهندسی مجدد…………………….. 25

2-9مزیت‌های BPR………………………………….. 26

2-10فنون مهندسی مجدد…………………………….. 26

2-11روش‌شناسی‌ها و رویکردهای مهندسی‌مجدد……………… 27

2-11-1 روش شناسی تنانت و وو………………………. 32

2-11-2روش‌شناسی فیوری…………………………….. 32

2-11-3روش‌شناسی کلین……………………………… 32

2-11-4روش‌شناسی بارت……………………………… 33

2-11-5روش‌شناسی هریسون و پرات……………………… 33

2-11-6روش شناسی داونپورت و شورت…………………… 34

2-11-7روش‌شناسی پتروزو و استپر…………………….. 34

2-11-8روش‌شناسی جانسون و دیگران……………………. 34

2-11-9روش شناسی د‌میج…………………………….. 35

2-11-10روش شناسی کالپیک و برناس…………………… 35

2-11-11 روش شناسی منگانلی و کلین………………….. 35

2-11-12 روش‌شناسی دی……………………………… 36

2-11-13 کتینگر و همکاران…………………………. 36

2-11-14 روش شناسی PRLC……………………………. 37

2-12عواملی که برای موفقیت یک برنامه مهندسی مجدد معمولاً باید فراهم شود    44

2-13عوامل موفقیت پروژه‌هاى مهندسى مجدد……………… 44

2-14عوامل بحرانی موفقیت برنامه‌های مهندسی مجدد………. 46

2-15موانع سر راه تلاش‌های مهندسی مجدد……………….. 47

2-16چالش‌ها و مخاطرات وموانع مهندسی مجدد……………. 47

2-16-1 شکست…………………………………….. 47

2-16-2مشکلات…………………………………….. 50

2-16-3موانع…………………………………….. 52

2-16-4ریسک……………………………………… 53

2-16-5چالش‌ها……………………………………. 54

2-17 نقش فناوری اطلاعات در مهندسی مجدد……………… 55

2-18بهبود تطبیقی………………………………… 56

2-19در یک سازمان چه کسانی اجرای مهندسی مجدد را بر عهده می گیرند     57

2-20دلایل روی آوردن سازمانها به مهندسی مجدد…………. 58

2-21اهمیت فرآیندها (شناخت فرآیندها)……………….. 60

2-22مهندسی مجدد و سیستم های برنامه ریزی……………. 61

2-23مهندسی مجدد و برنامه ریزی استراتژیک……………. 64

2-24دیدگاه ها و عناصر مهندسی مجدد در سازمان…………. 65

2-25گرایش بخش دولتی به مهندسی مجدد………………… 66

2-26آثار ویژگیها و محدودیتهای سازمانهای دولتی در یک پروژه‌ مهندسی مجدد   69

2-27 روش های مناسب خاص شرکتهای ایرانی کدامند ؟……… 71

2-28 تاریخچه وسیر تحولات بانکداری………………….. 73

2-28-1 آغاز بانکداری…………………………….. 73

2-28-2 تاریخچه بانکداری………………………….. 73

2-28-3 بانکداری در ایران…………………………. 76

2-28-3-1 صرافی………………………………….. 76

2-28-3-2بانکداری………………………………… 77

2-28-3-3اقدامات نخستین برای تشکیل بانک ملی ایران……. 78

2-28-3-4تشکیل بانک مرکزی ایران……………………. 80

2-28-4اهداف و وظایف بانک…………………………. 80

2-28-5 تحول بانکداری در ایران…………………….. 82

2-28-5-1 ملی شدن بانکها………………………….. 83

2-28-5-2 اداره امور بانکها……………………….. 84

2-28-5-3 شورای پول و اعتبار………………………. 84

2-28-5-4 ادغام بانکها……………………………. 85

2-28-5-5 بانک های خصوصی………………………….. 86

2-28-6 مؤ‌لفههای‌اصلی‌ اسلامی‌ شدن‌ نظام‌ بانکی‌…………… 87

2-28-7بانکداری اسلامی در ایران…………………….. 87

2-28-8بانکداری اسلامی و موفقیت خیره کننده آن در عرصه بین‌المللی  89

2-28-9ابزارهای نوین در نظام بانکداری اسلامی (چالشها و موانع)    92

2-28-10نظام بانکی ایران و عبور از پدیده اختلاس………. 95

2-28-10-1علل اختلاس در سیستم بانکی ایران…………….. 96

2-28-10-2راهکارهای جلوگیری از اختلاس………………… 97

2-28-10-3بانکداری الکترونیکی مانع اصلی اختلاس………… 99

2-29 اختلاس در نظام بانکی ایران ادامه خواهد داشت…….. 100

2-30 سند چشم‌انداز جمهوری اسلامی ایران در افق 1404…….. 101

2-31 قانون برنامه پنجساله پنجم توسعه جمهوری اسلامی ایران (1394-1390) 102

2-32 ماده97 قانون برنامه پنجساله پنجم توسعه جمهوری اسلامی 103

2-33قانون بهبود مستمر محیط کسب و کار………………. 103

2-34 پیشینه تحقیق……………………………….. 113

2-35 خلاصه………………………………………. 118

 

فصل سوم- روش شناسی تحقیق…………………………. 119

3-1 مقدمه………………………………………. 120

3-2 روش تحقیق…………………………………… 120

3-3 قلمرو موضوعی تحقیق…………………………… 120

3-4 قلمرو مکانی تحقیق……………………………. 120

3-5 قلمرو زمانی تحقیق……………………………. 121

3-6 جامعه آماری تحقیق……………………………. 121

3-7 روش نمونه گیری………………………………. 121

3-8 متغیرهای تحقیق………………………………. 122

3-8-1 شیوه اندازه گیری متغیرها……………………. 122

3-8-2 ابزارهای اندازه گیری و تجزیه و تحلیل داده ها….. 122

3-9 ابزار جمع آوری اطلاعات………………………… 123

3-9-1 کتابخانه ای……………………………….. 123

3-9-2پرسشنامه…………………………………… 123

3-9-2-1روایی …………………………………… 125

3-9-2-2پایایی…………………………………… 125

3-10ملاحظات اخلاقی………………………………… 127

3-11 خلاصه ……………………………………… 127

 

فصل چهارم- تجزیه و تحلیل داده ها………………….. 129

4-1 مقدمه………………………………………. 130

4-2تجزیه و تحلیل یافته های پرسشنامه……………….. 130

4-2-1 مشخصه های فردی پاسخگویان……………………. 130

4-2-1-1جنسیت……………………………………. 130

4-2-1-2 سابقه کار……………………………….. 130

4-2-1-3 مدرک تحصیلی……………………………… 132

4-2-1-4 پست اجرایی………………………………. 133

4-2-2 میانه حیطه ها در وضعیت موجود و مطلوب…………. 136

4-2-3 تحلیل میانه یافته ها……………………….. 138

4-2-3-1تحلیل میانه حیطه ها در وضعیت موجود و مطلوب…… 138

4-2-3-2 تحلیل میانه پرسش های هر یک از حیطه ها در وضعیت موجود   139

4-2-3-3تحلیل میانه پرسش های هر یک از حیطه ها در وضعیت مطلوب    142

4-3 فرضیه های تحقیق……………………………… 146

4-3-1 فرضیه اصلی………………………………… 146

4-3-2 فرضیه های فرعی…………………………….. 146

4-4 آزمون فرضیه ها………………………………. 146

4-4-1 فرضیه اولتحقیق…………………………….. 146

4-4-2 فرضیه دوم تحقیق……………………………. 148

4-4-3 فرضیه سوم تحقیق……………………………. 149

4-4-4 فرضیه چهارم تحقیق………………………….. 151

4-4-5 فرضیه اصلی تحقیق…………………………… 152

4-5 آزمون ویل کاکسون…………………………….. 153

4-5-1 وضعیت موجود……………………………….. 153

4-5-2 وضعیت مطلوب……………………………….. 157

4-6 آزمون کولموگروف اسمیرنوف……………………… 161

4-6-1 وضعیت موجود……………………………….. 161

4-6-2 وضعیت مطلوب……………………………….. 165

4-7 خلاصه……………………………………….. 169

 

فصل پنجم- نتیجه گیری و پیشنهادها………………….. 170

5-1 مقدمه………………………………………. 171

5-2تحلیل نتایج فرضیه ها………………………….. 172

5-2-1 فرضیه اول تحقیق……………………………. 173

5-2-2 فرضیه دوم تحقیق……………………………. 173

5-2-3 فرضیه سوم تحقیق……………………………. 173

5-2-4 فرضیه چهارم تحقیق………………………….. 174

5-2-5 فرضیه اصلی تحقیق…………………………… 174

5-3 بررسی و تحلیل سازگاری وضعیت موجود و مطلوب………. 174

5-4 بررسیو تحلیل اولویت بندی حیطه ها………………. 177

5-4-1 بررسی و تحلیل اولویت بندی حیطه ها در وضعیت موجود. 177

5-4-2 بررسی و تحلیل اولویت بندی حیطه ها در وضعیت مطلوب. 177

5-5  بررسی و تحلیل اولویت بندی پرسش ها…………….. 177

5-5-1 بررسی و تحلیل اولویت بندی پرسش ها در وضعیت موجود. 177

5-5-2 بررسی و تحلیل اولویت بندی پرسش ها در وضعیت مطلوب. 178

5-6  محدودیت های تحقیق…………………………… 178

5-6-1 محدودیت های پژوهشی…………………………. 178

5-6-2محدودیت های اجرایی………………………….. 179

5-7پیشنهادها……………………………………. 180

5-7-1پیشنهادهای کاربردی………………………….. 180

5-7-2پیشنهادها برای پژوهش های آینده……………….. 182

5-8  خلاصه………………………………………. 184

 

پیوستشمارهیک ـ پرسشنامه………………………….. 185

پیوست شمارهدو ـ جداول و محاسبات میانه پرسش ها………. 188

منابع و مآخذ …………………………………… 214

چکیده انگلیسی…………………………………… 219

چکیده

بی تردید صنعت بانکداری در ایران،بعنوان یکی از مهمترین ابزارهای نظام اقتصادی و مالی کشور قادر است به کمک سیاست های اعتباری و مالی خود، وسایل رشد و توسعه اقتصادی را در کشور فراهم نماید. انبوه مشکلات این صنعت در سال های اخیر، فعالیت های اصلاحی زیادی را برای ایجاد تحول در آندر پی داشته است. اما از آنجا که این فعالیت های صورت گرفته عمدتاً مقطعی و صرفاً برای گذر از یک مقطع زمانی خاص و یا یک چالش بوجود آمده بوده، هیچگاه به تحولات بنیادی منجر نگردیده است.

تصوبسندچشم انداز بیست ساله توسعه کشور و چهار برنامه پنج ساله در راستای تحقق اهداف این چشم انداز و همچنین نقش استراتژیک بانک ها بعنوان اساسی ترین پیش نیاز برای دستیابی به اهداف رشد و توسعه ملی،فرصتی بی نظیر برایانجام تحولات بنیادی در صنعت بانکداری کشور بوجود آورده است.

یکی از روش های به کاررفته برای انجام تحولات بنیادی توسط سازمان‌ها که در دو دهه اخیر شاهد رشدی انفجاری بوده، مهندسی مجدد فرآیند کسب وکار است،که علیرغم پیشرفتهای انقلابی و بنیادین در سازمان‌ها شاهد نرخ بالای شکست در این گونه اقدامات بوده ایم. بر همین اساس، هدف این تحقیق تعیین حیطه های تحولات بنیادی مورد نیاز نظام بانکی برای دستیابی به اهداف توسعه تعیین گردید،که با بهره گرفتن از روش های توصیفی، پیمایشی و تحلیلی با تعیین کل صنعت بانکداری ایران شامل بانک های دولتی و غیر دولتی بعنوان قلمرو مکانی و سال 1391 خورشیدی بعنوان قلمرو زمانی آن،به شناسایی حیطه های تحولات بنیادی صنعت بانکداری ایران با رویکردی استراتژیک بپردازد.

پژوهش حاضر دارای دو جامعه آماری می باشد که عبارتند از جامعه آماری سازمانی که ده بانک دولتی و غیر دولتی نمونه از بین آنها انتخاب شده اند و جامعه آماری مدیران و برنامه ریزان صنعت بانکداری که پاسخ دهندگان از بین آنها انتخاب شده اند. برای جمع آوری داده ها از پرسشنامه و برای تحلیل اطلاعات از روش های آماری استفاده شده است.

نتایج بدست آمده پس از انجام این پژوهش گویای تأیید شدن نیاز به تحولات بنیادی در چهار حیطه، رسالت و اهداف، استراتژی ها و خط مشی ها، ساختار و وظایف و عوامل محیطی و گروه های ذینفع می باشد. نظرات پاسخ دهندگان نشان دهندهاولویت بالاترحیطه رسالت اهداف نسبت به سایر حیطه ها می باشد.

واژگان کلیدی:مهندسی مجدد، چشم انداز، خط مشی، فرآیند، توسعه، بانک

مقدمه

توسعه اقتصادی[1] با مفهوم رشد همراه با افزایش ظرفیت‌های تولیدیاعم از ظرفیت‌های فیزیکی، انسانی و اجتماعی مدتهاست بعنوان یک واژه کلیدی توسط تمامی دولتمردان در سراسر جهان مورد استفاده قرار می گیرد و در تمام برنامه ریزی های صورت گرفته برای دستیابی به توسعه اقتصادی توسط آنها دو هدف اصلینمایان است. اول، افزایش ثروت و رفاه مردم جامعه (و ریشه‌کنی فقر) و دوم، ایجاد اشتغال، که در حقیقت هر دوی این اهداف در راستای عدالت اجتماعی تعیین گردیده است. با نگاه دقیق تر به مفهوم توسعه اقتصادی مشخص می شود که در آن،علاوه بر رشد کمی تولید، نهادهای اجتماعی نیز متحول خواهند شد، نگرش‌ها تغییر خواهد کرد، توان بهره‌برداری از منابع موجود به صورت مستمر و پویا افزایش خواهد یافت و هر روز نوآوری جدیدی انجام خواهد شد (بیرو، 1366، ص90)که همه اینها نشان دهنده وجود رابطه ای مستقیم میان توسعه اقتصادی با بهبود فضای کسب و کار می باشد.

در مجموع شاید بتوان بهبود فضای کسب و کار را بعنوان پیش نیازی استراتژیک برای دستیابی به توسعه در نظر گرفت و همین امر نشان دهنده آنست که توسعه امری فراگیر در جامعه است و نمی‌تواند تنها در یک بخش از آن اتفاق بیفتد. البته باید توجه داشت که توسعه، حد و مرز و سقف مشخصی ندارد بلکه بدلیل وابستگی آن به انسان، پدیده‌ای کیفی است (برخلاف رشد اقتصادی که کاملاً کمی است) که هیچ محدودیتی ندارد.نگاه به مقوله توسعه اقتصادی در کشورهای پیشرفته (توسعه‌یافته) و کشورهای توسعه‌نیافته متفاوت است. در کشورهای توسعه‌یافته هدف اصلی، افزایش رفاه و امکانات مردم است در حالیکه در کشورهای عقب‌مانده، بیشتر ریشه‌کنی فقرو افزایش عدالت اجتماعی مدنظر است. که برای قضاوت در این زمینه می توان نظام اقتصادی و مالی هر جامعه را بعنوان تصویر گویایی از نحوه زندگی مردم و درجه استقلال و وابستگی آن جامعه در نظر گرفت.باید توجه داشت که همراه با توسعه اقتصادی، رشد اقتصادی هم خواهد بود ولی توسعه لزوما همراه رشد نخواهد بود (حائریان اردکانی،1385، ص25).

در این میان بانک ها بعنوان یکی از ابزارهای اصلی نظام اقتصادی و مالی قادر هستند به کمک سیاست های اعتباری و مالی خود، وسایل رشد و توسعه اقتصادی و یا برعکس توقف و رکود اقتصادی را در کشور فراهم کنند. بعنوان نمونه بانک ها می توانند با اعطای وام های بازرگانی، صنعتی و تولیدی وسایل رشد و توسعه کشور را فراهم نمایند. با توجه به این مورد هدف پژوهشگر از انتخاب نظام بانکی در این پژوهش و تعیین حیطه های تحولات بنیادی مورد نیاز آن، نقش استراتژیک بانکها بعنوان اساسی ترین پیش نیاز برای دستیابی به اهداف رشد و توسعه ملی می باشد.

این پژوهش مشتمل برپنچ فصل می باشد،که در فصل اول اهداف پیش روی تحقیق وضرورت انجام آن، در فصل دوم مروری بر تاریخچه مهندسی مجدد و آشنایی با صنعت بانکداری در ایران، در فصل سوم روش انجام این پژوهش، در فصل چهارم تحلیل نتایج بدست آمده و در فصل پنجم اشاره ای به محدودیت های پژوهشو در پایان پیشنهاد هایی بیان می گردد.

1-1  مقدمه

 گسترش داد و ستد و مبادله کالا(غیر از مبادلات جنس به جنس) بین مردم  منشاء  بروز تحولات بسیاری در جوامع انسانی بوده است. با گسترش تجارت پیش از آنکه پول به مفهوم جدید مورد استفاده قرار گیرد، احتیاج به یک وسیله پرداخت، سنجش ارزش ها و بویژه وصولمطالباتازمشتریان دور و نزدیک با وجود خطرات ناشی از نقل و انتقال پولمحسوس تر گردید که انجام  این فعل و انفعال منجر به ایجاد مؤسساتی بنام بانک گردید (سایت بانک رفاه،1391).

بانکها بعنوان قلب اقتصاد و یکی ازمنابع اصلی تأمین مالی کوتاه مدت، از طریق جذب سپرده های مردمی و اعطای انواع  وام های کوتاه مدت و بلند مدت به ساماندهی و سازماندهی  سرمایه های سرگردان و راکد در سطح جامعه پرداخته و با این کار خود نقش بسیار مهمی در سر و سامان بخشیدن به فضای کسب و کار در کشور و یا بعبارت بهتر سبببهبود فضای کسب و کار می شوند. با توجه به آنکه بهبود فضای کسب و کار،اساسی ترین پیش نیازهای توسعه ملی می باشد،می توان از این نظر بانکها را بعنوان یکی از مؤثرترین ابزارهای توسعه ملی به حساب آورد. هدف توسعه[2] در همه کشور ها بهبود زندگی انسان و ارتقای کیفیت آن با توجه به آرمانها و ارزشهای مورد قبول آنهاست. در واقع توسعه حرکتی مستمر و پویا به منظور افزایش توانایی انسانها در رفع نیازهای مادی و معنوی از طریق گسترش متوازن ساختارها و نهادهای اجتماعی است (عیدی،1387).

هر سازمان و یا شرکت ، یک نهاد اجتماعی مبتنی بر هدف بوده و دارای سیستمهای فعال و هماهنگ است و با محیط خارجی ارتباط دارد. در گذشته، هنگامی که محیط نسبتاً با ثبات بود بیشتر سازمانها برای بهره‌برداری از فرصتهای پیش‌آمده به تغییرات تدریجی و اندک اکتفا می‌کردند (همر و چمپی، 1375)بر این اساس می توان بانکها را بعنوان یک نهاد اجتماعی هدفمند و دارای سیستم های فعال و هماهنگ بحساب آوردکه با محیط خارجی ارتباط دارند. بانک ها نیز مانند هر سازمان یا شرکت دیگر در گذشته هنگامی که محیط نسبتاً با ثبات بود برای بهره بردای از فرصت های پیش آمده به تغییرات تدریجی و اندک کفایت می کردند. در حالیکه امروزه نظام بانکی در سطح بین المللی مشمول تغییر و تحول ومدرنیزاسیون قرار گرفته و پدیده الکترونیک، انقلابی را در نظام بانکداری به لحاظ خلقابزارهای جدید و سرعت در سرویس دهی و برداشتن مرزهای فیزیکی با چالش های جدیدی روبرو ساخته است (روزنامه تفاهم، 1386) و همین امر موجب ایجاد ویا تقویت نگرش های جدیدی در صنعت بانکداری ایران می گردد.

آنچه تاکنون در رابطه با انجام تحولات در صنعت بانکداری ایران صورت گرفته عمدتاً مقطعی و صرفاً برای گذر از یک مقطع زمانی خاص و یا یک چالش بوجود آمده بوده و بر همین اساس هیچگاه به تحولات بنیادی[3] منجر نگردیده است. هدف این تحقیق تعیین حیطه های تحولات بنیادی مورد نیاز نظام بانکی برای دستیابی به اهداف توسعه می باشد که امروزه این تحولات بنیادی را در سراسر دنیا با نام مهندسی مجدد[4] می شناسند. با توجه به شرایط فعلی که سند بیست ساله برای چشم انداز توسعه کشور به تصویب رسیده، داشتن رویکردی استراتژیک در رابطه با مسائل و موضوعات مرتبط با نظام بانکی غیر قابل اجتناب می باشد.

1-2 بیان مساله

از تأسیس اولین بانک در ایران (بانک جدید شرق) بیش از یکصد و بیست سال میگذرد.در طول این مدت صنعت بانکداری در ایران همواره با فراز و نشیب های زیادی همراه بوده است. اما بی تردید در این مدت همواره بانک ها بعنوان قلب اقتصاد کشور وبعبارت بهتراز مهمترین ابزارهای روان سازی رشد و توسعه مورد توجه مسئولان و برنامه ریزان کشور بوده اند. توسعه نظام بانکی کشور بویژه در سال های پس از انقلاب اسلامی و رویکرد مسئولان به بانکداری اسلامی شرایط جدیدی را درکشور ایجاد نموده و برنامه ریزان را بر آن داشته تا با اتکای به نظام بانکی کشور، برنامه ریزی های استراتژیک و بلند مدتی برای بهبود فضای کسب و کار در راستای دستیابی به توسعه ملی انجام دهند.در این میان،برنامه پنجم توسعه بعنوان برنامه ای با هدف بهبود فضای کسب و کار در تحقق چشم انداز بیست ساله کشور را می توان نشان دهنده عزم راسخ مسئولان برای سرو سامان بخشیدن به فضای کسب و کار در جامعه در نظر گرفت.

چشم انداز بیست ساله جمهوری اسلامی ایران بعنوان معتبرترین سندی که تاکنون در راستای شناسایی و معرفی چالش های جدیدی که کشور در تفکر نوین جامعه جهانی با آنها روبروست به تصویب رسیدهو از سوی مقام معظم رهبری در سال 1383 به سران سه قوه و رئیس مجمع تشخیص مصلحت نظام ابلاغ شده است.این سند از سال 1384 تا سال 1404 هجری شمسی به مدت بیست سال مبنای اصلی چهار برنامه پنج ساله توسعه قرار خواهد گرفت. ایران در سال 1404 کشوری توسعه یافته با جایگاه اول اقتصادی، علمی و فناوری در سطح منطقه آسیای جنوب غربی با هویت اسلامی و انقلابی، الهام بخش در جهان اسلام و تعامل سازنده و مؤثر در روابط بین الملل خواهد بود. جامعه ایرانی در افق این چشم انداز بایددارای ویژگی زیر باشد:

دست یافته به جایگاه اول اقتصادی، علمی و فناوری در سطح منطقه آسیای جنوب غربی (شامل آسیای میانه، قفقاز، خاورمیانه و کشورهای همسایه) با تأکید بر جنبشنرم‌افزاری و تولید علم، رشد پرشتاب و مستمر اقتصادی، ارتقاء نسبی سطح درآمد سرانهو رسیدن به اشتغال کامل.

در راستای تحقق اهداف چشم انداز مذکور، قانون برنامه پنجساله پنجم توسعه جمهوری اسلامی به تصویب رسیده است.در بخش پول و بانک در فصل پنجم این قانون در راستای بهبود فضای کسب و کار، در ماده97با توجه به بند (23) سیاستهای کلی برنامه پنجم ابلاغی مقام معظم رهبری،  شورای پول و اعتبار موظف است طی سالهای برنامه موارد زیر را انجام دهد:

الف ـ اصلاح رویه‌های اجرائی، حسابداری و مالی در سامانه بانکی مطابق اهداف و احکام بانکداری بدون ربا

ب ـ ترویج استفاده از ابزارهای تأمین مالی اسلامی جدید نظیر صکوک جهت کمک به تأمین مالی اسلامی بانکهای کشور

ج ـ اصلاح ساختار بانک مرکزی در جهت تقویت نظارت بر نهادهای پولی و مالی به منظور تحقق اهداف کلان اقتصادی کشور

د ـ افزایش شفافیت و رقابت سالم در ارائه خدمات بانکی در جهت کاهش هزینه خدمات بانکی از طرق ذیل:

1ـ الزام بانکها به رعایت استانداردهای تعیین‌شده توسط بانک مرکزی در ارائه گزارشهای مالی و بهبود نسبت شاخص کفایت سرمایه و اطلاع‌رسانی مبادلات مشکوک به بانک مرکزی

2ـ راه‌اندازی سامانه نظارتی قوی جهت شناسایی فعالیتهای غیرمتعارف بانکها هنگام دستکاری نرخهای سود سپرده‌ها و تسهیلات به روش های خاص.

هـ ـ تقویت نظامهای پرداخت.

این درحالیست که در کشور ما بانک ها با چالش ها و مشکلات مختلفی روبرو هستند. یک بخش ناشی از متغیر های کلان کشور است و بخش دیگر مربوط به سطح دید خود بنگاه مالی یا بانک است.

اجرای بانکداری بدون در نظر گرفتن اصل 44 قانون اساسی تا حدود زیادی باعث نادیده انگاشتن نیاز های مشتریان شده است. درحالیکه دنیای نو طالب بانکداری مدرن، پرسرعت، پاسخگو و کارگشاست،ضرورت نوسازی نظام بانکی بیش از پیش در عصر فناوری اطلاعات احساس می شود. بدهی دولت و شرکت های دولتی به بانک ها، بدهی بانک ها به بانک مرکزی، مانده مطالبات معوق بانک ها، درجازدن دولت در حمایت از بانکداری الکترونیکی و نفوذ نیروهای سیاسی در نظام بانکی خود نشان دهنده این مطلب است که  نظام بانکی در ایران پیشرفت مطلوبی نداشته است و نیاز به نوسازی دارد (سروش نیا، 1387).در حقیقت شاید بتوان ریشه همه این مسائل را در شکل گیری تدریجی نظام بانکی کشور در طی سالیان گذشته،سنتی بودن شالوده فرآیندها، کندی تصمیم گیری به سبب عمودی، سنتی و سلسله مراتبی بودن ساختار نظام بانکی وپیچیده و متنوع بودن  نوع و شکل خدمات دانست.انبوه مشکلات این صنعت در سال های اخیر، فعالیت های اصلاحی زیادی را برای ایجاد تحول در آن در پی داشته است. اما از آنجا که این فعالیت های صورت گرفته عمدتاً مقطعی و صرفاً برای گذر از یک مقطع زمانی خاص و یا یک چالش بوجود آمده بوده، هیچگاه به تحولات بنیادی منجر نگردیده است.

لذا بهبود فضای کسب و کار با  اصلاح رویه‌های اجرائی، حسابداری و مالی در سامانه بانکی مطابق اهداف و احکام بانکداری بدون ربا و همچنین اصلاح ساختار بانک مرکزی در جهت تقویت نظارت بر نهادهای پولی و مالی به منظور تحقق اهداف کلان اقتصادی کشور مستلزم تحولی اساسی در مبانی، روشها، ساختارها و فرآیندهای مدیریتی در سطوح مختلف عملکردیدر نظام بانکی کشور است.

از سوی دیگر نیل به هدف بزرگ ارتقای جایگاه ایران در دست یافتن به جایگاه اول اقتصادی، علمی و فناوری در سطح منطقه آسیای جنوبغربی، که بر اساس سند چشم انداز بیست ساله بر عهده بخش های مختلف نظام نهاده شده است، در گرو بازنگری ساختارها و بالابردن کارایی و کارآمدی در نظام بانکی کشور می باشد.درراستای قانون برنامه پنجم توسعه، ابلاغ سیاست های کلی اصل 44 قانون اساسی و تأکید رئیس جمهور بر تحول رفتار نظامبانکی کشور و تحقق هفت فرمان صادره برای تحول نظام بانکی، زمینه های لازم برای دستیابی به اهداف سند چشم انداز فراهم گردیده ولی مستلزم بستر سازی مناسب در نظام بانکی می باشد. برای این بسترسازی لازم است رسالت و اهداف، استراتژیها و خط مشی ها، ساختار و وظایف و عوامل محیطی تاثیر گذار در نظام بانکی دستخوش تحولات اساسی گردند.این تحولات بنیادی علاوه بر اینکه باید با رویکردی سیستمی مورد بررسی قرارگیرند، لازم است دیدگاه استراتژیک نیز بر آنها حاکم باشد تا بتوانند جوابگوی افق مورد نظر در سند چشم انداز باشند.

 پایان نامه حاضر قصد دارد تا با جمع آوری، بررسی و تحلیل نظر خبرگان صنعت بانکداری ایران بتواند پاسخ مناسبی برای این سؤال که برای دستیابی به اهداف چشم انداز بیست ساله و اهداف برنامه های پنجساله توسعه و بویژه برنامه پنجم توسعه چه تحولات بنیادی در صنعت بانکداری ضروری می باشد بدست آورد که در این راستا به سوی تعیین روش انجام مهندسی مجدد تمرکز می نماید تا از این راه احتمال عدم موفقیت اینگونه برنامه ها تا آنجا که امکان پذیر است به حداقل کاهش یابد،زیرا مهندسی مجدد را هنگامی باید مطرح ساخت که بهاصلاحات اساسی نیاز باشد، اصلاحات جزئی نیاز به اقدامات ظریف و دقیق دارد، اصلاحات چشمگیر مستلزم تخریب ساختارهای قدیمی و جایگزینی آنها با ساختارهای تازه است.

1-3 اهمیت و ضرورت تحقیق

توجه به بانکها و نظام بانکی می تواند گامی مؤثر درجهت توسعه اقتصادی کشورها و بازویی قدرتمند برای دولت ها در راستای تحقق اهدافشان باشد. از اینرو لازم است در راستای تحقق اهداف چشم انداز بیست ساله و برنامه پنجم توسعه، نسبت به بستر سازی و انجام تحولات بنیادی مورد نیاز نظام بانکی اقدامات مؤثرتری صورت پذیرد.

این در حالیست که با تدوین سند چشم انداز بیست ساله و همچنین برنامه پنجم توسعه، انجام تحقیقی در زمینه اجرایی شدن ماده 97 و در واقع دستیابی به اهداف فصل پنجم برنامه، مبنی بر بهبود فضای کسب وکار بسیار حائز اهمیت بوده و ضرورت پیدا کرده است.بویژه آنکهامروزهبانکها با مشکلات متعددی همچون بدهی دولت و شرکت های دولتی به بانک ها، بدهی بانک ها به بانک مرکزی، مانده مطالبات معوق بانک ها، درجازدن دولت در حمایت از بانکداری الکترونیکی و نفوذ نیروهای سیاسی در نظام بانکی درگیر هستند(سروش نیا، 1387).

این مسائل زمانی خود را بیشتر نمایان می سازند که شاهد آن هستیم کهاهداف در نظام بانکی یا به خوبی تدوین نشده و یا راهبرد‌های حاکم، آنها را به مقصد نمی‌رسانندو مهمتر از همه آنکه در چند سال گذشته کشور با تحولات سریعی مواجه گردیده و در آستانه پیوستن به اقتصاد جهانی و عضویت در سازمان تجارت جهانی یعنی ورود به اقتصاد رقابتی نیز می باشد.

لذا برنامه ریزان کلان بانکی کشور برای رسیدن به اهداف عالیه خویش لزوم بازنگری، تغییر و تحول روزآمد، تجدیدنظر در برخی اهداف و برنامه‌های عملیاتی خویش را احساس نموده‌اند که برای این کار باید از شناخت کامل و همه جانبه فرآیندهای مختلف نظام بانکی شروع نموده تا وضعیت موجود بدست آید و سپس با بهره گرفتن از فنون مدیریتی از جمله فن مهندسی مجدد فرآیندها که در دنیای کسب و کار قویاً مورد استفاده قرار گرفته است، دست به تغییرو بهبود فرآیندها زد.

بطور کلی مهندسی مجدد جهت سازمانهایی همچون نظام بانکی که ساختار سنتی و بوروکراتیک دارند و اکنون برای بقای خود هزینه سنگینی پرداخت می کنند می تواند مناسب باشد.مهندسی مجدد بیش از آنکه یک تکنیک و روش بهبود باشد، یک دیدگاه تغییر و رویکرد ساختار شکن است، بعبارت بهتر یک تحول در مدیریت است. مهندسی مجدد با دگرگون سازی و طراحی جدید، ‌تغییر ذهنیت، فرهنگ و نظام ارزشی در ساختار فرآیندها و روش استفاده از منابع و امکانات تحول بنیادی ایجاد می کند.

با توجه عمیق تر به فصل پنجم و مفاد ماده 97 قانون برنامه پنجم توسعه اهمیت و ارزش این تحقیق بیشتر مشخص خواهد شد.

 عین مفاد ماده 97 عبارتست از:

با توجه به بند (23) سیاستهای کلی برنامه پنجم ابلاغی مقام معظم رهبری شورای پول و اعتبار موظف است طی سالهای برنامه موارد زیر را انجام دهد:

الف ـ اصلاح رویه‌های اجرائی، حسابداری و مالی در سامانه بانکی مطابق اهداف و احکام بانکداری بدون ربا

ب ـ ترویج استفاده از ابزارهای تأمین مالی اسلامی جدید نظیر صکوک جهت کمک به تأمین مالی اسلامی بانکهای کشور

ج ـ اصلاح ساختار بانک مرکزی در جهت تقویت نظارت بر نهادهای پولی و مالی به منظور تحقق اهداف کلان اقتصادی کشور

د ـ افزایش شفافیت و رقابت سالم در ارائه خدمات بانکی در جهت کاهش هزینه خدمات بانکی از طرق ذیل:

1ـ الزام بانکها به رعایت استانداردهای تعیین‌شده توسط بانک مرکزی در ارائه گزارشهای مالی و بهبود نسبت شاخص کفایت سرمایه و اطلاع‌رسانی مبادلات مشکوک به بانک مرکزی.

2ـ راه‌اندازی سامانه نظارتی قوی جهت شناسایی فعالیتهای غیرمتعارف بانکها هنگام دستکاری نرخهای سود سپرده‌ها و تسهیلات به روش های خاص

هـ ـ تقویت نظامهای پرداخت

1-4  اهداف تحقیق

1-4-1 هدف اصلیتحقیق

تعیین حیطه های تحولات بنیادی مورد نیاز نظام بانکی برای دستیابی به اهداف توسعه ضروری می باشد.

1-4-2 اهداف فرعیتحقیق

  • تعیین تحولات بنیادی مورد نیاز در حیطه رسالت و اهداف بانکها برای بهبود فضای کسب و کار
  • تعیین تحولات بنیادی مورد نیاز در حیطه استراتژی ها و خط مشی های بانکها برای بهبود فضای کسب و کار
  • تعیین تحولات بنیادی مورد نیاز در حیطه ساختار و وظایف بانکها برای بهبود فضای کسب و کار
  • تعیین تحولات بنیادی مورد نیاز در حیطه عوامل محیطی و گروه های ذینفع بانکها برای بهبود فضای کسب و کار

1-5  فرضیه های تحقیق

1-5-1 فرضیه اصلی:

برای بهبود فضای کسب و کار، تحولات بنیادی در صنعت بانکداری ایران ضروری می باشد.

1-5-2 فرضیه های فرعی:                    

  1. انجام تحولات در حیطه رسالت ها و اهداف بانکها موجب بهبود فضای کسب و کار می شود.
  2. انجام تحولات در حیطه استراتژی ها و خط مشی های بانکها موجب بهبود فضای کسب و کار می شود.
  3. انجام تحولات در حیطه ساختار و وظایف بانکها موجب بهبود فضای کسب و کار می شود.
  4. انجام تحولات در حیطه عوامل محیطی و گروه های ذینفع بانکها موجب بهبود فضای کسب و کار می شود.

1-6  تعریف واژگان تخصصی

مهندسی مجدد[5]: طراحی ریشه ای فرآیندها،تشکیلات و فرهنگ سازمان برای دستیابی به جهش هایی خارق العاده در عملکرد آن سازمان. مهندسی مجدد یعنی بازاندیشی بنیادین و طراحی نو و ریشه ای فرآیندها، برای دستیابی به بهبود و پیشرفتی شگفت انگیز در معیارهای حساس امروزی همچون قیمت، کیفیت،خدمات و سرعت (همر و چمپی، 1375).

چشم انداز[6]: تصویر چیزی است که سازمان قصد دارد در آینده آن گونه باشد.(هریسون، 1389).

خط مشی[7]: یک برنامه عمومی است که به منزله راهنمای عمل، مدّ نظر مدیران قرار گرفته و نحوه اجرای برنامه را برای مسئولان اجرایی سازمان معین می­ کند؛ ضمن آنکه وسیله مؤثری برای کنترل عملیات به شمار می‌آید (رضائیان، 1379).

فرآیند[8] : مجموعه ای از فعالیت های به یکدیگر وابسته که هدف همه آنها تامین رضایت و نیاز مشتری است. هر فرآیند با یک تأمین کننده مواد اولیه آغاز می شود و با یک مشتری پایان می یابد (سوری، 1386).

توسعه[9]: توسعه در لغت به معنای رشد تدریجی در جهت پیشرفته شدن، قدرتمندتر شدن و حتی بزرگترشدن است. در واقع توسعه را می توان کوششی برای ایجاد تعادلی تحقق نیافته یا راه حلی در جهت رفع فشارها و مشکلاتی که پیوسته بین بخش های مختلف زندگی اجتماعی و انسانی وجود دارد دانست (لشکری، 1386).

بانک[10]:واژه بانک اصطلاحی قدیمی از زبان آلمانی (bank) است که در ایتالیا مفهوم نیمکت[11] از این واژه استخراج شده و از آنجا که صرافان ایتالیایی در فلورانس روی نیمکتهایی در نزدیکی محل های داد و ستد قرار می گرفتند این اصطلاح به معنی بانک تلقی شد (پژویان،1385).

1-7 خلاصه

در این فصل پژوهشگر در ابتدا به بیان مسئله و اهمیت انجام و اهداف پژوهش پرداخته و واژه ها و مفاهیم کلیدی در انتهای این فصل ارائه شده است.

تعداد صفحه :241

قیمت :37500 تومان

بلافاصله پس از پرداخت ، لینک دانلود فایل در اختیار شما قرار می گیرد

و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.

پشتیبانی سایت  asa.goharii@gmail.com

پایان نامه ارشد کارشناسی ارشد رشته مهندسی برق گرایش قدرت:کنترل خودکار تولید سیستم قدرت در حضور منابع انرژی تجدیدپذیر- قسمت 5

ده‌های گذرای آئرودینامیکی کنترل زاویه می‌باشد. زمانیکه کاهشی در زاویه شیب پدید می‌آید، نیروی آئرودینامیکی از مقدار مثبت اولیّه خود با میزان فراجهش مشخّصی به مقدار مثبت بالاتری می‌رود [55] [56].  در نتیجه، حتی در خلال وزش بادهای شدید (سرعت وزش باد بالاتر از 11  )، پشتیبانی توان اکتیو اضافی نیز فراهم خواهد بود.

شکل 3-8 زاویه شیب لازم برای تأمین سطوح متفاوتی از پشتیبانی توان اکتیو را برای سرعت‌های مختلف وزش باد، نشان می‌دهد.

شکل 3- 8 زاویه شیب پره برای برداشت سطوح مختلف توان اکتیو در سرعت‌های بالای وزش باد

شایان ذکر است، تغییر کمی در زاویه شیب پره از مقدار ابتدایی خود برای میسّر نمودن پشتیبانی توان اکتیو اضافی در هر سرعت باد معینّی لازم به نظر می‌رسد. همچنین، تغییر در میزان زاویه شیب پره جهت دریافت یک سطح معین از پشتیبانی برای سرعت‌های وزش باد کمتر، کمتر خواهد بود.

البته، مقادیر نمودار‌های عنوان شده به ثابت لختی توربین بادی   و شکل منحنی  وابسته می‌باشد. ثابت لختی   و منحنی  برای انواع توربین‌ها متفاوت خواهد بود. در نتیجه مقادیر مورد نظر در اینجا می‌تواند متناسب با سازندگان مختلف توربین تغییر کند.

3-2-4- کاربرد پشتیبانی موقّت  توان اکتیو DFIG در کنترل فرکانس سیستم قدرت

شکل1-8 مدل خطی سیستم دو ناحیه ای قدرت را جهت انجام مطالعات کنترل بار فرکانس نشان می‌دهد. ناحیه کنترلی 1، ناحیه ای متشکّل از تولید حرارتی و همچنین تولیدی بادی سرعت متغیّر دو سو تغذیه DFIG را نشان می‌دهد. سیستم قدرت دو ناحیه ای حرارتی در اینجا مشابه سیستم قدرت ارائه شده در [2] می‌باشد. هر ناحیه متشکّل از یک واحد حرارتی با ظرفیت نامی 500 مگاوات می‌باشد. اطلاعات سیستم قدرت در جدول-1 در ضمیمه آمده است. پاسخ دینامیکی سیستم قدرت به انحراف باری معادل با 0.1 توان مبنای ناحیه 1 در حضور تولید بادی DFIG با ضریب نفوذ‌های مختلف، در نرم افزار Matlab/Simulink r2013a مورد بررسی قرار می‌گیرد. در بخش بعدی تغییرات بوجود آمده در لختی سیستم به سبب تغییر در ضریب نفوذ تولید بادی مورد بررسی قرار می‌گیرد.

3-2-5- تغییر در تنظیم دروپ واحد‌های تولید بادی توسط DFIG بدون قابلیّت پشتیبانی فرکانس

ساختار اصلی تنظیمات دروپ مانند قبل ثابت است؛ افزایش ضریب نفوذ بادی، افزایشی در دروپ معادل (کاهشی در بهره معادل دروپ) را به همراه دارد. با داشتن ضریبی معادل با ، تنظیم دروپ به فرم بیان شده در معادله 3-9 تغییر می کند:

(3-9)

3-2-6- تغییر در ثابت لختی سیستم بدون پشتیبانی فرکانس از طرف تولید بادی

افزایش ضریب نفوذ تولید بادی منجر به جایگزینی بیشتر آن با تولید متداول گشته و به طبع آن لختی سیستم نیز کاهش می‌یابد. این وضعیت به بدتر شدن وضعیت تنظیم فرکانس شبکه در نبود هیچ گونه پشتیبانی فرکانسی از طرف DFIG می انجامد.

% ضریب نفوذ تولید بادی به معنای % کاهش در توان موجود در تولید متداول است. به این معنی که % از لختی شبکه کاسته شده و هیچگونه کنترل فرکانسی نیز در پی این جایگزینی تمهید نشده است. در نتیجه لختی سیستم به صورت زیر تغییر می‌کند:

(3-10)

در پی این تغییر و با افزایش ، لختی شبکه نیز کاهش می‌یابد و منجر به افت بیشتری در فرکانس می‌شود.

3-2-7- تغییر در تنظیم فرکانس و ثابت لختی سیستم در حضور سیستم پشتیبانی فرکانس

کنترلر سریع توان/گشتاور DFIG، فرکانس‌های الکتریکی و مکانیکی ماشین را از هم جدا می سازد و بدینوسیله عملکرد سرعت متغیّر آنرا فراهم می سازد. هر تغییری در سرعت سیستم در گشتاور و یا سرعت DFIG منعکس نمی‌شود؛ همانطوری که عملکرد ژنراتور-مبدل نیز مستقل از فرکانس شبکه است. در نتیجه، از دید شبکه، DFIG هیچ گونه لختی برای شبکه به همراه ندارد. هر چند که پاسخ لختی از طرف DFIG‌ها را می‌توان به کمک سیگنال‌های کنترلی کمکی فراهم کرد [47] [48] [49] [50] [51].

ثابت لختی اصلاح شده سیستم در حضور تولید بادی DFIG با ضریب نفوذ  و با پشتیبانی فرکانس را می‌توان به صورت زیر عنوان کرد:

(3-11)

سهم لختی مزرعه بادی ، همانطوری که توسط سیستم قدرت تجربه می‌شود، در زمانی که توربین‌های بادی پشتیبانی موقّت  توان اکتیوِ اضافی معادل با  با تخلیه انرژی جنبشی موجود در جرم چرخان توربین را فراهم می‌کنند، توسط رابطه3-12 بیان می‌شود:

(3-12)

که در آن:

(3-13)

برای یک تغییر بار پله ای  و ضریب نفوذ مشخّصی از تولید بادی ، لختی توربین‌های بادی موقّتاً به لختی شبکه اضافه شود. به عبارت دیگر با تحویل توان اضافی، علاوه بر توان حالت ماندگار تحویلی توربین‌های بادی به کنترلر مبدل پاور الکترونیک، با جذب انرژی ذخیره شده در قسمت چرخان توربین‌ها لختی شبکه نیز به نسبت افزایش می‌یابد.

سهم لختی توربین بادی ، بر اساس مدل تاخیری توربین- گاورنر که در [35] [57] بیان شده، بدست آمده است. ثابت لختی  مجدّداً می‌تواند برای ضریب نفوذ مشخّصی از تولید بادی و همچنین سطح مشخّصی از پشتیبانی موقّت توان اکتیو محاسبه شده و برای اصلاح ثابت لختی معادل سیستم، در معادله 3-10 وارد شود.

مجموع تاخیر زمانی  که در معادله 3-12 عنوان شد، بر اساس مدلی است که در [57] بیان شده است.  زمانی است که در آن بیشترین تغییر فرکانس پس از بروز اغتشاشی در بار پدید می‌آید. این تاخیر متشکّل است از ثابت زمانی گاورنر ، ثابت زمانی ناشی ازحرکت دریچه شیر بخار  و همچنین تأخیر ناشی از پاسخ توربین .

(3-14)

از اینرو، مجموع تاخیر زمانی ، برای هر واحد تولیدی منحصر به فرد می‌باشد. برای نیروگاه‌های حرارتی می‌توان تأخیر زمانی را به صورتی که در ادامه می‌آید، نتیجه گرفت:

  • تأخیر زمانی مرتبط با گاورنر:
  • تأخیر زمانی ناشی از حرکت دریچه شیر بخار :
برای توربین بخار باز گرم کن:
  • تأخیر ناشی از پاسخ توربین :
برای تورین بخار باز گرم کن [35] :

همانطور که عنوان شد، قابلیّت تنظیم فرکانس بر اساس رابطه 3-8 برای ضرایب نفوذ مختلف باد و شدّت باد، تغییر می‌کند. تغییر در لختی سیستم در ازای ضرایب مختلف نفوذ تولید بادی، متناسب با نقشی که تولید بادی در کنترل فرکانس شبکه می پذیرد، متفاوت است. تغییر لختی سیستم وقتی تولید بادی در کنترل فرکانس شرکت نمی‌کند مطابق رابطه 3-10 و وقتی در آن شرکت دارد برابر رابطه 3-11 تعیین می‌شود. با حضور تولید بادی DFIG بدون آنکه مدل جامع  DFIGدر آن وارد شود، مقادیر تخمینی تنظیم فرکانس و ثابت لختی شبکه در مدل خطی سیستم دوناحیه ای قدرت نشان داده شده در شکل 1-8 تغییر کرده و تاثیرات حضور سیستم کنترلی در آن در نظر گرفته می‌شود. جدول 3-1 مقادیر تخمینی تنظیم دروپ و لختی سیستم قدرت در حضور تولید بادی DFIG برای افزایش توان اکتیو معادل 0.05 توان مبنای مزرعه بادی در حضور ضرایب نفوذ متفاوت تولید بادی را نشان می‌دهد.

در حضور قابلیت پشتیبانی فرکانس   بدون پشتیبانی فرکانسی   شاخص
30% 20% 10%   30% 20% 10% 0% ضریب نفوذ
                پارامتر
0.0714 0.0625 0.055   0.0714 0.0625 0.055 0.05
4.2185 4.5061 4.7654   3.5 4 4.5 5

جدول 3- 1تغییر در تنظیم دروپ واحد های تولیدی و لختی سیستم برای ضریب نفوذ های متفاوت باد

3-2-8- کنترلر پیشنهادی برای پشتیبانی توان اکتیو از DFIG برای کنترل فرکانس

مشابه تولید متداول، توربین‌های بادی مقدار مشخّصی انرژی جنبشی در قسمت چرخان توربین خود ذخیره می کنند. در مورد توربین‌های بادی سرعت متغیّر این انرژی نقشی در کمک به لختی شبکه ندارد. زیرا ادوات الکترونیک قدرت حائل میان توربین بادی و شبکه، کوپلاژ میان سرعت چرخشی و فرکانس شبکه را از بین می‌برد. به عبارت دیگر حضور مبدل الکترونیک قدرت میان توربین بادی و شبکه، مفهوم لختی توربین‌های بادی را برای شبکه از میان می‌برد.

معمولاً، کنترلرهای توربین بادی سرعت متغیّر سعی می‌کنند توربین‌ها را در سرعت بهینه‌ای مورد بهره برداری قرار دهند تا بتوانند بیشینه توان را متناسب با آن استحصال کنند. کنترلر بر اساس سرعت و توان الکتریکی اندازه گیری شده، نقطه مرجع گشتاور را تعیین می‌کند.

همانطور که شکل (3-1) نشان می دهد نقطه مرجع گشتاور ، ورودی مبدل الکترونیک قدرت است که با کنترل کلیدزنی و تنظیم جریان خروجی مبدل، توان تحویلی به شبکه را تأمین می‌کند. برای بکار بردن انرژی و لختی توربین‌های بادی جهت تزریق توان اکتیو به شبکه و کمک به کنترل فرکانس، سیگنال کنترلی جدیدی مطابق با آنچه در شکل 3-9 در داخل خط چین نشان داده شده است، پیشنهاد می‌شود.

این سیگنال کنترلی در زمان تشخیص انحراف فرکانس در شبکه، کنترل اولیّه فرکانس توربین‌های بادی  DFIG را فعّال کرده و تغییر توان اکتیوی متناسب با تغییرات فرکانس سیستم  و همچنین نرخ تغییرات فرکانس شبکه  برای شبکه قدرت فراهم می‌آورد. اثر لختی توربین‌های بادی با ثابت کنترلر  و پشتیبانی کنترل اولیّه فرکانس نسبت مستقیم با  دارد. این افزایش توان علاوه بر مقدار توان تحویلی توربین‌های بادی قبل از بروز اغتشاش بار  بوده و با اعمال سیگنال کنترلی جدید انرژی جنبشی موجود در جرم چرخان توربین‌ها به این مقدار اضافه شده و مقدار جدیدی  را اخذ می کند. لازم به ذکر است بخاطر جذب انرژی جنبشی موجود در توربین‌های چرخان بادی جهت تزریق آن به شبکه، سرعت چرخش توربین‌ها از سرعت بهینه شان کاهش می‌یابد. نرخ کاهش سرعت توربین بادی به تغییرات فرکانس و نرخ تغییرات آن وابسته است.

ذکر این نکته ضروری است، توان اکتیو اضافی DFIG، تنها در دوره ای گذرا در کنترل اولیّه فرکانس شرکت دارد. وقتی سیستم به حالت ماندگار جدیدی دست پیدا کرد که با حالت بهینه آن اختلاف دارد، نرخ تغییرات فرکانس توسط ثابت میراکنندگی بار و تنظیم دروپ سیستم تاثیر می پذیرد. کنترلر انتگرالگیر

شکل 3- 9 کنترلر پیشنهادی برای پشتیبانی فرکانس

حلقه ثانویه کنترل (AGC) سعی در از بین بردن خطای حالت ماندگار شبکه می کند و فرکانس شبکه و توان انتقالی خطوط را به مقدار نامی و از پیش مقرّر شده آن باز می‌گرداند. در نتیجه، سیگنال کنترلی اضافی ای که برای مبدل الکترونیک قدرت در نظر گرفته شده بود و به عنوان تابعی از تغییرات فرکانس و نرخ تغییرات فرکانس عمل می‌کرد(شکل 3-9 )، غیرفعّال شده و عملکرد نرمال DFIG پیگیری می‌گردد تا مجدّداً سرعت چرخش توربین‌های بادی را به میزان بهینه آن باز گرداند و زمینه مشارکت‌های بعدی را فراهم کند.

3-3- مشارکت واحد های تولید توان خورشیدی در کنترل فرکانس شبکه

با توجّه به سابقه تحقیق مطرح شده در باب کنترل فرکانس سیستم‌های تولید انرژی خورشیدی که در فصل پیش آمد، مشخّص شد، جایگزینی تولید خورشیدی به جای تولید متداول مستقیماً لختی شبکه را کاهش می‌دهد. علاوه بر آن با توجّه به نوسانات تابشی خورشید، توان استحصالی از انرژی خورشید ثابت نبوده و با تغییر شدّت تابش خورشید، تغییر می‌کند. خصوصیاتی که استحصال انرژی توسط سیستم‌های خورشیدی به صورت MPPT به دنبال دارد، ویژگی‌های مطلوبی برای بهره‌برداری از تولید خورشیدی در مقیاس بالا نیست. ورود یک چنین منبع کنترل نشده‌ای به شبکه، بار اضافی برای سیستم‌های کنترل فرکانس به حساب می‌آید.

در این بخش ابتدا به چگونگی جذب انرژی خورشیدی توسط پانل‌های خورشیدی و معادلات مربوطه بیان می‌شود. در ادامه استراتژی کنترلی مناسبی برای شرکت دادن تولید خورشیدی در کنترل اولیّه فرکانس بیان می‌شود. تاثیرات استفاده از یک چنین سیستم کنترلی بر روی سیستم قدرت مدل شده و ساختار کنترل فرکانس بار شبکه در حضور این کنترلر به روز می‌شود.

3-3-1- مشخّصات پانل‌های خورشیدی و مدلسازی آنها

در اینجا به صورت مختصر خصوصیات و مدل ماژول‌های خورشیدی بیان می‌شود [58]. ماژول خورشیدی، تجهیزی غیر خطی است که می‌توان آنرا همانطور که در شکل 3-10 آمده به عنوان منبع جریان در نظر گرفت.

با صرفنظر از مقاومت‌های سری داخلی ، می‌توان معادلات متداول  یک ماژول خورشیدی را به صورت بیان شده در رابطه 3-16 ذکر کرد:

(3-16)

شکل 3- 10 مدار معادل ماژول خورشیدی [21]

که در آن  و  به ترتیب جریان و ولتاژ خروجی ماژول خروجی می باشند.  جریان تولیدی تحت تابش خورشیدی،  جریان اشباع معکوس،  شارژ الکتریکی الکترون،  ثابت بولتزمن،   فاکتور ایده‌آلی دیود،  دمای ماژول خورشیدی (به کلوین)،  تعداد سلول‌های خورشیدی موازی و  جریان ذاتی شاخه مقاومت موازی ماژول خورشیدی است. همانطور که در معادله 3-17 فرمول بندی شده، جریان اشباع ماژول خورشیدی  با نوسانات دما تغییر می‌کند:

(3-17)
(3-18)

که در آن  جریان اشباع در دمای مرجع ،  انرژی باند خالی،  ضریب تاثیر دمای جریان اتصال کوتاه ماژول خورشیدی است. مقدار جریان شاخه‌های موازی به صورت زیر حاصل می‌شود:

(3-19)

که در آن  تعداد سلول‌های سری و  مقاومت موازی داخلی ماژول خورشیدی است.

شکل 3-11 ساختار کلی ژنراتور خورشیدی متصل به شبکه را نشان می دهد.

شکل 3- 11 ژنراتور خورشیدی متصل به شبکه

با توجه مدلسازی که بیان شد، در یک تابش مشخصی از خورشید و یک دمای معین، پانل‌های خورشیدی با توجه به ولتاژ نقطه کار خود توان جریان مشخصی را تولید می کند. این نقطه کار با توجه به ولتاژ  ماژول خورشیدی حاصل می شود. این ولتاژ از طریق رفرنس ولتاژ واسط الکترونیک قدرت به این ادوات اعمال می شود. برای یک ماژول خورشیدی معادلات بیان شده در 3-16 الی 3-19، در نرم افزار Matlab/Simulink r2013a مدل شده و به ازاء تغییرات رفرنس ولتاژ ماژول‌های خورشیدی، منحنی‌های  و  به ازاء تابش‌های مختلف خورشید برای دمای عادی محیط معادل با 300 درجه کلوین (27 درجه سانتیگراد)، در شکل‌های 3-12و 3-13 رسم شده اند. از این نمودار‌های اینطور استنباط می‌شود که آرایه‌های خورشیدی غیر خطی‌اند و نقطه کار آنها به شدّت با تغییر تابش خورشید و همچنین ولتاژ رفرنس تغییر می‌کند.

شکل 3- 12 منحنی V_I ماژول خورشیدی

 

 

 

شکل 3- 13 منحنی V_P ماژول خورشیدی

3-3-2- استراتژی کنترلی پیشنهادی برای مزرعه خورشیدی

همانطور که بیان شد می‌توان دینامیک سیستم قدرت متشکّل از چندین ژنراتور سنکرون را به فرم خطی شده زیر مدل کرد [2]:

(3-20)

که در آن  فرکانس سیستم در مبنای واحد،  و  به ترتیب توان مکانیکی و الکتریکی کل در مبنای واحد،  ثابت لختی به ثانیه و  عامل میراکننده در مبنای واحد است. به خاطر اینکه معمولاً ثابت زمانی بزرگی در ارتباط با دینامیک توان مکانیکی  وجود دارد (نظیر دینامیک بویلر)، در چهارچوب زمانی کوتاه مدت لختی سیستم نقشی مهّم در تعیین حسّاسیت فرکانس سیستم نسبت به عدم تعادل میان تولید و مصرف دارد. از طرفی عامل میراکننده تعیین کننده قابلیّت سیستم در جذب عدم تعادل توان و کم کردن تغییرات حالت ماندگار فرکانس سیستم دارد.

3-3-3- تغییر در تنظیم دروپ واحد‌های تولیدی در حضور تولید خورشیدی با ضریب نفوذ

ساختار اصلی تنظیمات دروپ مانند قبل ثابت است؛ افزایش ضریب نفوذ بادی، افزایشی در دروپ معادل (کاهشی در بهره معادل دروپ) را به همراه دارد. با داشتن ضریبی معادل با ، تنظیم دروپ به فرم بیان شده در معادله 3-21 تغییر می نماید:

(3-21)

3-3-4- تغییر در ثابت لختی سیستم در حضور تولید خورشیدی

همانند تولید بادی، در حضور تولید خورشیدی با ضریب نفوذ  در شبکه معادله تعادل توان 3-19 کماکان برقرار است. ولی از آنجا که تولید خورشیدی هیچ جرم چرخانی ندارد و انرژی ذخیره شده ای در خود ندارد، حضور تولید خورشیدی با ضریب نفوذ   در شبکه منجر به کاهش لختی سیستم صورت معادله 3-22 می‌شود:

(3-22)

در چنین شرایطی اگر تولید خورشیدی سهمی در توانایی تنظیم فرکانس نداشته باشد، تغییرات بار در شبکه منجر به تغییرات شدیدتری در فرکانس سیستم خواهد شد.

3-3-5- مشارکت واحد تولید خورشیدی در تنظیم فرکانس شبکه

جهت فائق آمدن بر مشکلات نامطلوب ورود تولید سیستم‌های خورشیدی، طرح کنترلی جدیدی برای شرکت دادن تولید خورشیدی در تنظیم فرکانس سیستم قدرت پیشنهاد شد [29]. در این طرح کنترلی، برای اینکه سیستم خورشیدی تنظیماتی مشابه تنظیم دروپی مشابه با ژنراتورهای سنکرون داشته باشد، یک گاورنر سرعت مجازی برای آن طراحی شده است. علاوه بر آن زمانی که کسری بار یا افزایش تابش شدیدی رخ داد، می بایست توان خروجی واحد خورشیدی سریعاً محدود گردد تا عدم تعادل توان تغییرات توان کمینه گردد. پس از یک تاخیر زمانی، سیستم خورشیدی می‌تواند مجدّداً به حالت کنترل دروپ خود باز گردد.

از مدل تک خطی سیستم خورشیدی متصل به شبکه که در شکل 3-11 نشان داده شده است، نیز می‌توان برای نشان دادن طرح کنترلی استفاده شود. لازم به ذکر است در طرّاحی فعلی، از دینامیک سریع اندوکتانس داخلی اینورتر در مقایسه با دیگر اجزای سیستم صرفنظر شده است [59] .همانطور که در شکل 3-14 نشان داده شده است استراتژی کنترلی را می‌توان در سه سطح بیان نمود:

شکل 3- 14 ساختار اصلی سیستم کنترلی

در سطح 1، یک کنترلر PWM مطابق حلقه دوگانه کنترلی مشغول بکار خواهد بود (جهت اطلاعات بیشتر به [21] مراجعه شود). حلقه خارجی ولتاژ آرایه خورشیدی  و توان راکتیو  آنرا کنترل می‌کند، در

پایان نامه بررسی ابعاد حقوقی مهندسی معکوس از منظر حقوق مالکیت فکری

   

 دانشکده حقوق

پایان‏ نامه دوره کارشناسی ارشد حقوق مالکیت فکری

بررسی ابعاد حقوقی مهندسی معکوس از منظر حقوق مالکیت فکری

اسفند 1393

(در فایل دانلودی نام نویسنده و استاد راهنما موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

حقوق مالکیت فکری با ابتنا بر حفظ دستاوردهای مبدعین و نوآوران در برابر سرقت و شبیه‏سازی، در پی اشاعه هر چه بیشتر دانش، نوآوری‏ها و دسترسی بشر به فناوری است. تحقق این هدف عالی که مبنایی برای پی‏ریزی نظامی شده که ممکن است خود منجر به ممانعت از اشاعه و دسترسی به دانش شود، در گرو حفظ تعادل میان حقوق صاحبان فکر و جامعه‏ی بهره‏بردار از دانش است. لذا تامل مجدد در ممنوعیت‏های مقرر در حقوق مالکیت فکری چه‏بسا آن‏ها را به فرصت‏هایی تبدیل کند. هدف این پژوهش تاملی مجدد در مورد مهندسی معکوس است، روشی که در ظاهر بسترساز شبیه‏سازی و سرقت است. در این پژوهش تلاش شده تا ضمن توجه به ابعاد و آثار فنی این روش، تا حد امکان مباحث اقتصادی و حقوقی مطروح پیرامون آن بررسی شوند. تنها از رهگذر این مباحث است که خواننده به قدرت مبانی نیاز به شناسایی حق مهندسی معکوس پی خواهد برد. تفاوت مبانی فوق در هر یک از صنایع، اقتضای اتخاذ رویکرد مناسب در هر یک از آن‏ها دارد. تعیین حدود و قلمروی مجاز مهندسی معکوس در سه شاخه‏ی حقوق مالکیت فکری بخشی از پژوهش حاضر را به خود اختصاص داده چراکه چالش اصلی در برابر شناسایی این حق را مقتضیات حقوق مالکیت فکری دانسته‏اند. پژوهش حاضر نشان خواهد داد که مهندسی معکوس فی‏نفسه متضمن نقض حق یا نقض اساسی حق از منظر حقوق مالکیت فکری نیست و نگرانی ناشی از امکان سرقت و شبیه‏سازی با بهره گرفتن از اطلاعات ناشی از مهندسی معکوس، با اتخاذ سیاست‏هایی نظیر نظارت بر اقدامات پس از مهندسی معکوس رفع خواهد شد.

واژگان کلیدی: مهندسی معکوس، اختراع، سرّ تجاری، حق مولف، نرم‏افزارهای رایانه‏ای

فهرست مطالب

فصل اول: کلیات (طرح تحقیق)……………………………………………………………..1

1-1  تبیین موضوع و ضرورت تحقیق……………………………………………………………..2

1-2 هدف تحقیق و گروه‏های بهره‏بردار از نتایج تحقیق……………………………………………..5

1-3 سوالات تحقیق………………………………………………………………………………………………………………………………………5

1-4 فرضیه‏های تحقیق…………………………………………………………………………………………………………………………………6

1-5 مواد و روش انجام تحقیق……………………………………………………………………………………………………………………..6

1-6 جنبه‏های نوآوری و گستره‏ی تحقیق……………………………………………………………………………………………………7

1-7 سامانه‏ی پژوهش……………………………………………………………………………………………………………………………………8

فصل دوم : مفاهیم و مبانی………………………………………………..9

2-1  مفاهیم و پیشینه……………………………………………………………………………………………………………………………….10

2-1-1 مفهوم و فرایند مهندسی معکوس……………………………………………………………………………………10

2-1-2 تمییز مهندسی معکوس از مفاهیم مشابه……………………………………………………………………….20

2-1-2-1 مهندسی معکوس و انتقال فناوری………………………………………………………………..20

2-1-2-2 مهندسی معکوس و مهندسی مجدد……………………………………………………………..21

2-1-2-3 مهندسی معکوس و کِرَکینگ………………………………………………………………………..23

2-1-2-4 مهندسی معکوس و جاسوسی صنعتی………………………………………………………….24

2-1-2-5 مهندسی معکوس و نسخه‏برداری………………………………………………………………….25

2-1-3 پیشینه‏ی مهندسی معکوس…………………………………………………………………………………………….27

2-1-3-1 پیشینه‏ی فنی………………………………………………………………………………………………..27

2-1-3-2 پیشینه‏ی حقوقی…………………………………………………………………………………………..33

2-2 مبانی شناسایی حق مهندسی معکوس………………………………………………………………………………………………36

2-2-1 مبانی فنی شناسایی حق مهندسی معکوس……………………………………………………………………37

2-2-1-1 فناوری و روش‏های دسترسی به آن……………………………………………………………..37

2-2-1-2 مزایا و ضرورت مهندسی معکوس…………………………………………………………………41

2-2-2 مبانی اقتصادی شناسایی حق مهندسی معکوس…………………………………………………………….45

2-2-2-1 مبانی اقتصادی شناسایی حق مهندسی معکوس در صنایع تولیدی سنتی…48

2-2-2-2 مبانی اقتصادی شناسایی حق مهندسی معکوس در صنعت نرم افزارها………54

2-2-3  مبانی حقوقی شناسایی حق مهندسی معکوس……………………………………………………………..66

2-2-3-1 مبانی حقوقی مندرج در اسناد بین المللی……………………………………………………67

2-2-3-2  مبانی حقوقی مبتنی بر نارسایی‏های مقررات حقوق مالکیت فکری…………..76

2-2-3-3 دکترین نخستین فروش………………………………………………………………………………..84

2-3 نتیجه‏گیری فصل دوم…………………………………………………………………………86

فصل سوم: اصول سیاستگذاری و قواعد حقوقی ناظر بر مهندسی معکوس………88

3-1 اصول و معیارهای سیاستگذاری در مورد مهندسی معکوس…………………………………91

3-1-1انتخاب سیاست براساس «روش مهندسی معکوس»………………………………………………………..92

3-1-2 انتخاب سیاست براساس «اقدامات پس از مهندسی معکوس»……………………………………….94

3-1-3 انتخاب سیاست براساس «هدف و ضرورت مهندسی معکوس»……………………………………..95

3-1-4 سیاست «محدودیت انتشار اطلاعات ناشی از مهندسی معکوس»………………………………….96

3-1-5 اصول سیاستگذاری………………………………………………………………………………………………………….97

3-2 حدود و قلمروی مجاز مهندسی معکوس……………………………………………………………………………………………98

3-2-1 حق مولف…………………………………………………………………………………………………………………………99

3-2-2 حقوق اسرار تجاری………………………………………………………………………………………………………..107

3-2-3 حقوق اختراعات…………………………………………………………………………………………………………….114

3-2-4 حقوق قراردادها……………………………………………………………………………………………………………..121

3-3 نتیجه‏گیری فصل سوم…………………………………………………………………………………………………………………….126

نتیجه گیری و پیشنهاد…………………………………………………….128

فهرست منابع…………………………………………………………….135

الف) منابع فارسی……………………………………………………………………………………………………………………………………..135

ب) منابع لاتین…………………………………………………………………………………………………………………………………………138 

 تبیین موضوع و ضرورت پژوهش

نظام حقوق مالکیت فکری که پیدایش آن معلول رشد و تکامل دانش انسانی و ظهور و پیشرفت تکنولوژی است، موجد حقوقی انحصاری برای پدیدآورندگان آثار فکری شده است. به این معنا که دارنده‏‏ی حق فکری، می‏تواند از یک سو از تمام حقوق ناشی از اثر خود به نحو انحصاری بهره‏برداری و از سوی دیگر برای استفاده دیگران از آن ممانعت ایجاد کند. علی‏رغم ویژگی انحصاری بودن این حقوق، برقراری تعادل بین منافع دارندگان حقوق فکری از یک سو و حق دسترسی عموم به اطلاعات و دانش از سوی دیگر که ماده 27 اعلامیه جهانی حقوق بشر سال 1948 میلادی نیز موید آن است، منجر به شناسایی و وضع استثنائات و محدودیت‏هایی بر حقوق انحصاری فکری شده است. با این حال، همواره لزوم تفسیر مضیّق از چنین استثنائاتی مورد تاکید قانون‏گذاران قرار گرفته است.

گفته می‏شود مهندسی معکوس یا بازیابی و تشخیص اجزای یک محصول که به عنوان روشی شناخته شده برای کسب دانش، تاریخی به قدمت ساخته‏های دست بشر دارد، تحت شرایطی، از جمله چنین استثنائاتی است. مهندسی، استفاده خلاقانه از اصول علمی به منظور طراحی، ساخت و توسعه ابزار و محصولات است و به عبارت دیگر، فرایندی است که طی آن از اصول علمی به محصولی فکری، دست می‏یابند درحالیکه در فرایند مهندسی معکوس با بررسی یک محصول از پیش ساخته شده، به شناختن اصول فنی موجود در آن محصول و استفاده از آن‏ها در مهندسی‏های بعدی دست می‏یابند. با وجود آنکه مهندسی معکوس در نگاه اول به لحاظ اقتصادی، منجر به کاهش تمایل مشتریان به محصول اولیه شده، یک شیوه مناسب و شناخته شده برای کسب دانش محسوب می‏شود. این روش، از موضوعات مورد انتقاد و چالش‏برانگیز در برخی نظام‏های حقوقی و اقتصادی است که با گذشت زمان با تحولاتی نیز مواجه شده است.

مهندسی معکوس در بسیاری از صنایع و علوم کاربرد دارد. به عنوان مثال می‏توان به استفاده از آن در دی‏کامپایل کردن نرم‏افزارهای رایانه‏ای اشاره کرد. نرم افزارها حاوی دو نوع کد یا برنامه هستند. (1) برنامه یا کد مبدا[1] که متن برنامه‏های تهیه شده توسط برنامه‏نویس بوده و قابل فهم برای انسان است. (2) زبان یا کد ماشین[2] که برنامه یا کد قابل فهم توسط کامپیوتر بوده و معمولا تحت عنوان اسرار تجاری حفظ می‏شود. از آنجا که دی‏کامپایل کردن یا به‏دست آوردن کد ماشین نرم‏افزار، می‏تواند شرایط سرقت و شبیه‏سازی نرم‏افزار را فراهم کند، نگرش نظام‏های حقوقی ابتدا، مبتنی بر ممنوعیت آن بوده است. اما بعدها تحت شرایطی ازجمله با هدف سازگار نمودن نرم‏افزار با نرم افزار یا سخت افزار دیگر[3]، در برخی نظام‏های حقوقی مجاز و استثنایی بر حقوق پدیدآورنده نرم‏افزار شناخته شد. اما پس از آن نیز پرسش دیگری مطرح شد: آیا مالک نرم‏‏افزار رایانه‏ای می‏تواند فراتر از حقوق مادی مقرر در قانون، ضمن قرارداد لیسانس شرطی مبنی بر ممنوعیت مهندسی معکوس بگذارد؟ همچنین آیا دی‏کامپایل کردن نرم‏افزار، حقوق اختراعی آن را (در صورتی که نرم افزار اختراع محسوب شود) نقض خواهد کرد یا خیر؟

این دست سوالات، منجر به اختلاف نظرهایی شد، به این ترتیب که مخالفان و موافقان شناسایی مهندسی معکوس به اظهار نظر پرداختند. گذشته از موافقت و مخالفت مطلق برخی، گروهی از مخالفان معتقد به ممنوعیت نسبی این پدیده بوده و آن را به عنوان یک استثنا پذیرفته‏اند. در حالیکه برخی موافقان، معتقد به پذیرفتن مهندسی معکوس به عنوان یک اصل و قاعده که استثنائاتی نیز بر آن وارد است، هستند و هریک مبانی و دلایلی را مطرح ساخته‏اند. به عنوان مثال موافقان، از مباحث حقوق بشر، حق بر توسعه و برخی مبانی اقتصادی برای توجیه نظرات خود بهره برده‏اند.

برخی نظام‏های حقوقی با در نظر گرفتن معیارهایی که برخی از آنها مشترک و برخی ناشی از اقتضائات سیاست، توسعه و اقتصاد ویژه کشورشان است، مقرراتی را در این حوزه وضع کرده‏اند و برخی عدم وضع مقررات و احاله تعیین تکلیف به رویه قضایی را مناسب‏ترین راهکار دانسته‏اند. در این خصوص قانونگذار ایرانی صراحتا مقرره‏ای را وضع نکرده است. با این حال جستجو در میان مقررات به منظور یافتن مقرره‏ای که رویکرد نظام حقوقی ایران را ولو طور ضمنی نسبت به این پدیده، نشان دهد، بی فایده نخواهد بود.

مهمترین چالشی که در این جا مطرح می‏شود وضع مقررات به نحوی است که ضمن حمایت از حقوق دارندگان محصولات فکری در مقابل شبیه‏سازی‏ها، مجالی نیز به مهندسی معکوس داده شود تا مسیر خلاقیت و رقابت نیز مسدود نگردد.

آنچه بررسی ابعاد حقوقی و اقتصادی مهندسی معکوس را در این پژوهش ایجاب می‏کند ، نقشی است که به‏کارگیری این شیوه‏ی کسب دانش، در توسعه اقتصادی کشورها دارد. به عبارت دیگر به لحاظ اهمیت و کاربردی که مهندسی معکوس بویژه در دهه‏های اخیر برای صنایع کشورمان پیدا کرده و همچنین عدم وجود مقررات روشن و صریح دراین باره، بررسی جنبه‏های حقوقی، تعیین محدوده‏ مجاز اعمال مهندسی معکوس و اتخاذ مناسب‏ترین رویکرد حقوقی ضرورت می‏یابد. این روش در کشورهای درحال توسعه‏ای مثل ایران، می‏تواند پاسخی به نیاز این کشورها به تقویت توان طراحی، تولید و افزایش سرعت فرایند تکوین محصولات و فناوری باشد. ضمن آنکه  به‏کارگیری این روش می‏تواند جذب کامل فناوری طی مراحل انتقال آن، شناختن نقاط کور فنی صنایع داخلی و تقویت رقابت در بازار را فراهم کند. بنابراین لازم است، نظام‏های حقوقی حسب شرایط اقتصادی، مقتضیات نظام حقوقی و نیازهای فنی و مهندسی، دست به تدوین مقرراتی در این حوزه بزنند.

برای نیل به این هدف در این پژوهش تلاش می شود معیارهایی که در وضع قوانین مربوط به مهندسی معکوس غالبا مورد توجه نظام‏های حقوقی قرار گرفته، بررسی شده و با توجه به اقتضائات توسعه و اقتصاد کشورمان و استاندارهای لازم‏الرعایه در وضع مقررات، پیشنهادهایی به قانونگذار ایرانی داده شود.

  • هدف تحقیق و گروه‏های بهره‏بردار از تحقیق

با توجه به ضرورتی که در بررسی ابعاد حقوقی مهندسی معکوس وجود دارد، هدف این پژوهش قاعدتا پاسخگویی به پرسش‏هایی است که اولا مهندسان و تحلیلگران مهندسی معکوس راجع به مشروعیت اقدامات خود و ثانیا حقوق‏دانان با هدف قانون‏گذاری یا دفاع از موکلین خود می‏پرسند. 

  • سوالات تحقیق
  1. مبانی شناسایی یا عدم شناسایی مهندسی معکوس کدامند؟
  2. با توجه به این مبانی، آیا در مورد همه محصولات فکری، می توان رویکرد واحدی نسبت به مهندسی معکوس، داشت یا خیر؟ و اگر خیر برای هر یک چگونه؟
  3. در تنظیم مقررات مربوط به مهندسی معکوس، چه معیارها و موضوعاتی باید مدنظر قانون گذار باشد تا بیشترین منافع اقتصادی کشور تامین شوند؟

1-4  فرضیه‏های تحقیق

  1. نظام های‏حقوقی برای توجیه چنین حقی عمدتا از تئوری‏های اقتصادی و مبتنی بر حفظ منافع عمومی در مقابل حقوق انحصاری مقرر برای پدیدآورندگان محصولات فکری مانند حق دسترسی به اطلاعات و دانش، همچنین تقویت رقابت و مبارزه با انحصاراتی که مسیر خلاقیت را مسدود می‏کنند، سخن می‏گویند.
  2. رویکرد کلی در مهندسی معکوس با توجه به مبانی شناسایی، جواز آن است اما درباره محصولاتی نظیر نرم‏افزارها یا محصولاتی که دانش فنی موجود در آنها سهل‏الوصول به لحاظ هزینه و زمان است، محدودیت مهندسی معکوس تحت شرایطی قابل توجیه خواهد بود.
  3. افزون بر ملاک سهولت مهندسی معکوس از جهت هزینه و زمان، لازم است قانونگذار معیار هدف اشخاص از مهندسی معکوس و آثار اقتصادی ناشی از ممنوعیت یا جواز مهندسی معکوس را نیز مدنظر قراردهد و به منظور برقراری تعادل، به وضع مقرراتی ناظر بر «کنترل روش‏های مهندسی معکوس» و «محدود نمودن افشای اطلاعات بدست آمده از طریق مهندسی معکوس» نیز توجه کند. استانداردهای حقوقی بین‏المللی (معاهدات بین‏المللی)  و مباحث مربوط به توسعه نیز در این خصوص از اهمیت برخوردارند.

تعداد صفحه :156

قیمت :37500 تومان

بلافاصله پس از پرداخت ، لینک دانلود فایل در اختیار شما قرار می گیرد

و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.

پشتیبانی سایت  asa.goharii@gmail.com

پایان نامه های دانلودی رشته مهندسی معدن

  1. دانلود رایگان متن کامل پایان نامه ارشد : امکان سنجی فرآوری کانه سخت منگنز جیرفت
  2. دانلود پایان نامه کارشناسی ارشد معدن درباره تعیین عیار اقتصادی در معادن روباز
  3. پایان نامه رشته معدن با موضوع کاربرد مهندسی ارزش در معادن
  4. پایان نامه ارشد رشته معدن درباره تحلیل و بررسی پارامترهای تاثیرگذار بر پایداری شیبها
  5. پایان نامه ارشد رشته معدن درباره کاربرد ایزوتوپهای پایدار در تعیین شرایط محیط کانی سازی
  6. پایان نامه ارشد رشته معدن درباره بررسی آزمایشهای برجا بر روی سازه های زیرزمینی
  7. پایان نامه ارشد رشته معدن درباره استفاده از فرایند هیدرومتالورژی در شستشوی شیمیایی
  8. پایان نامه ارشد رشته معدن با موضوع بررسی کاربرد ژئو فیزیک لرزه ای انعکاسی
  9. پایان نامه ارشد معدن با موضوع بررسی اولیه ژئوشیمیایی كانسارهای معدنی در منطقه چادگان
  10. پایان نامه ارشد رشته معدن با موضوع پی جویی طلا و عناصر همراه درمنطقه امام زاده هاشم
  11. دانلود پایان نامه کارشناسی ارشد با موضوع تئوری زنجیره بحرانی
  12. پایان نامه ارشد رشته معدن با موضوع :فرآیندمدیریت ریسك در پروژه های تونلسازی
  13. پایان نامه کارشناسی ارشد رشته معدن:پیش بینی خردایش حاصل از انفجار های معدنی
  14. پایان نامه ارشد رشته معدن :تفكیك آنومالی های گرانی سنجی با بهره گرفتن ازارتونرمال
  15. پایان نامه کارشناسی ارشد رشته معدن : ارزیابی و تحلیل پایداری شیب معدن انگوران
  16. پایان نامه ارشد رشته معدن:مطالعه پارامترهای فنی به منظور بالا بردن بازده چاه نفت
  17. پایان نامه کارشناسی ارشد رشته معدن:بهینه سازی فرآوری كانسنگ سولفوره كم عیارمس
  18. پایان نامه کارشناسی ارشد رشته معدن : مدلسازی پیلارهادرروش جبهه کارطولانی
  19. دانلود پایان نامه ارشد رشته معدن :تأثیر میزان تولید بر سود دهی تولید آلومینا از نفلین
  20. پایان نامه ارشد رشته معدن درباره ژئوشیمی كانسار فسفات اسفوردی و ارزیابی ذخیره آن
  21. پایان نامه ارشد رشته معدن : پیش بینی خردایش سنگ ناشی از انفجار در معدن مس
  22. پایان نامه ارشد رشته معدن :ارزیابی مقدماتی میزان تیتانیوم، وانادیوم و عناصر نادرخاکی
  23. پایان نامه ارشد رشته معدن :کاربرد نرمه کک در تولید گندله آهن برای بهبود کیفیت
  24. پایان نامه ارشد رشته معدن درمورد ارزیابی ریسک در پروژه های حفاری مکانیزه
  25. پایان نامه کارشناسی ارشد رشته معدن:امكان كاربردی بازیافت مفید ماده معدنی از باطله
  26. دانلود پایان نامه ارشدرشته معدن: بررسی ژنز و نحوه تشکیل کانسار فسفات اسفوردی
  27. پایان نامه رشته معدن:تجزیه و تحلیل تكنولوژی فرآوری سنگ آهن
  28. دانلودپایان نامه ارشد رشته معدن:برنامه ریزی تولیدمعدن آهن سنگان با نرم افزاه NPVScheduler
  29. دانلود پایان نامه ارشد رشته معدن:بررسی کاربرد دستگاه حفاری بازویی (Road Header)
  30. پایان نامه ارشد رشته معدن:راهكارهای اجرایی برای افزایش بهره وری تولیدسیلیس
  31. دانلود پایان نامه ارشد رشته معدن:اکتشافات ژئوفیزیکی و سنجش از دورعناصر پرتوزا
  32. دانلود پایان نامه رشته معدن : نیازهای كمی و كیفی صنعت فروسیلیس ایران به مواد معدنی
  33. دانلودپایان نامه ارشد رشته معدن:مقایسه فنی و اقتصادی روش های تولید گندلۀ سنگ آهن
  34. دانلود پایان نامه ارشد رشته معدن:پیش بینی خردایش ناشی ازفشاردرمعدن آهک سیمان
  35. دانلودپایان نامه ارشد رشته معدن :بهینه سازی خط تغلیظ كارخانه فرآوری سنگ آهن
  36. پایان نامه رشته معدن :طراحی معدن سنگ آهن زرند كرمان
  37. دانلود پایان نامه ارشد رشته معدن :محاسبه میزان تولید بهینه از منابع زغال سنگ ایران
  38. دانلود پایان نامه رشته معدن :بررسی فنی واقتصادی موادمعدنی موردمصرف در صنایع نسوز
  39. دانلود پایان نامه ارشد رشته معدن: تحلیل پایداری و طراحی نگهداری تونل 631 گلندرو
  40. دانلود پایان نامه ارشد رشته معدن :طراحی لرزه نگاری 3بعدی درمناطق زمین شناسی
  41. پایان نامه ارشد رشته معدن:بررسی تأثیرآب برروی طراحی ونتایج انفجاردرمعدن سنگ آهن
  42. پایان نامه رشته معدن :کانسارهای پورفیری حاوی طلا
  43. دانلود پایان نامه ارشد رشته معدن :تحلیل پارامترهای تعیین کننده عیار حد در معادن روباز
  44. پایان نامه رشته معدن : علل و علائم فوران چاه های نفت در حال حفار
  45. پایان نامه رشته معدن :مدیریت ریسک در استخراج پایه های زغالی
  46. دانلود پایان نامه ارشد رشته معدن:عوامل موثر برضریب بهره وری دستگاه های حفاری تمام مقطع تونل
  47. پایان نامه رشته معدن :عوامل مؤثر بر نرخ نفوذ ماشین حفار تمام مقطع تونل
  48. پایان نامه ارشد رشته معدن:نگهدارنده قدرتی دركارگاه های استخراج زغال با روش جبهه كار بلند
  49. پایان نامه ارشد رشته معدن :شناسایی مناطق امید بخش کانسارهای فلزی در زون کرج – دماوند
  50. پایان نامه رشته مهندسی معدن :فرآوری عناصر نادر خاكی
  51. دانلود پایان نامه ارشد رشته معدن:بررسی شرایط تشكیل و كاربرد كانیها و سنگهای صنعتی
  52. دانلود پایان نامه ارشد رشته معدن: سنگ آهك و كاربرد آن در صنعت متالورژی ایران
  53. دانلود پایان نامه ارشد رشته معدن:مطالعه سازند ها از نقطه نظر ژئومكانیكی جهت حفاری
  54. دانلود پایان نامه ارشد رشته معدن : حفر، کنترل و نگهداری تونلها در زمینهای آماسی
  55. دانلود پایان نامه ارشد رشته معدن : علل و علائم فوران چاه های نفت در حال حفاری
  56. دانلود پایان نامه ارشد رشته معدن : مدیریت ریسک در استخراج پایه های زغالی
  57. پایان نامه ارشد مهندسی معدن: تحلیل پایداری شیب در معدن مس میدوک
  58. پایان نامه کارشنای ارشد رشته معدن : ویژگی های دیاتومیت و موقعیت آن در ایران
  59. پایان نامه کارشناسی ارشد رشته معدن : بررسی دور سنجی و سیستم اطلاعات جغرافیایی در اکتشاف
  60. پایان نامه کارشناسی ارشد رشته معدن : تحلیلی در ارتباط با کائولن های ایران
  61. پایان نامه کارشناسی ارشد رشته معدن : استاندارد های زیست محیطی فعالیت های معدنی
  62. پایان نامه کارشناسی ارشد رشته معدن : کاربرد شبکه های عصبی در تونلزنی با TBM
  63. پایان نامه کارشناسی ارشد رشته معدن : برنامه ریزی و زمان بندی تولید در معادن روباز
  64. پایان نامه کارشناسی ارشد رشته معدن : تکنولوژی پیشرفته چسب رزین در نگهداری سقف حفریات معدنی
  65. پایان نامه کارشناسی ارشد رشته معدن : کاربرد نرم افزار UDEC در معادن زیر زمینی
  66. پایان نامه کارشناسی ارشد رشته معدن : کلیات اکتشاف در ایران و جزئیات اکتشاف معادن آهن
  67. پایان نامه کارشناسی ارشد رشته معدن : بررسی کانسار های فسفات از نظر شناخت و اکتشاف
  68. پایان نامه کارشناسی ارشد رشته معدن : روش و مراحل تلفیق لایه های مختلف اطلاعاتی در GIS
  69. پایان نامه کارشناسی ارشد رشته معدن : بررسی اکتشافی کانسار های آهن همدان
  70. پایان نامه کارشناسی ارشد رشته معدن : مطالعه تاثیر سیستم های نگهداری بر پایداری تونل های زیر زمینی
  71. پایان نامه کارشناسی ارشد رشته معدن : تحلیل وضعیت اکتشافی سرب و روی
  72. پایان نامه کارشناسی ارشد رشته معدن : تونل سازی به روش سپری
  73. پایان نامه کارشناسی ارشد رشته معدن : مدل سازی عددی آب های زیرزمینی به منظور تعیین شرایط هیدرو دینامیکی آبخوان
  74. پایان نامه کارشناسی ارشد رشته معدن : بررسیهای اکتشافی و پیدا کردن مناطق معدنی در زون چالوس- گرگان
  75. پایان نامه کارشناسی ارشد رشته معدن : کاربرد استاندارد در بهینه سازی پروژه های اکتشافی
  76. پایان نامه کارشناسی ارشد رشته معدن : روش های کاهش آلودگی های زیست محیطی ناشی از استفاده سیانید
  77. پایان نامه کارشناسی ارشد رشته معدن :انواع ماشین حفاری رودهدر و بررسی پایداری آن در فضای های زیر زمینی
  78. پایان نامه کارشناسی ارشد رشته معدن : اکتشاف مقدماتی معدن مس دره زار
  79. سمینار کارشناسی ارشد مهندسی معدن : پیش بینی نرخ نفوذ TBM با بهره گرفتن از مدل شبکه های عصبی
  80. سمینار کارشناسی ارشد رشته معدن :بهینه سازی الگوی آتشباری معدن سنگ آهن چادرملو با بهره گرفتن از شبکه های عصبی
  81. سمینار کارشناسی ارشد مهندسی معدن :تحلیل پایداری تونل زیر زمینی خط 4 متروی تهران در محدوده ابتدای خیابان پیروزی
  82. سمینار کارشناسی ارشد رشته معدن : تاثیر زلزله بر معادن
  83. سمینار کارشناسی ارشد رشته معدن : محاسبه میزان تولید بهینه از منابع زغال سنگ ایران
  84. سمینار کارشناسی ارشد رشته معدن : بررسی فنی و اقتصادی مواد معدنی مورد مصرف در صنایع نسوز
  85. سمینار کارشناسی ارشد رشته معدن : تحلیل پایداری و طراحی نگهداری تونل 631 گلندرود با بهره گرفتن از نرم افزار UDEC
  86. سمینار کارشناسی رشد مهندسی معدن : مدیریت استراتژیک در معدن
  87. سمینار کارشناسی ارشد رشته معدن : طراحی لرزه نگاری سه بعدی در مناطق پیچیده زمین شناسی جنوی ایران
  88. سمینار ارشد رشته معدن : مطالعه و بررسی نواحی امید بخش و آنومالی های موجود در سیروس آباد
  89. سمینار کارشناسی ارشد مهندسی معدن : تعیین الگوی بهینه آتشباری در تونلسازی
  90. سمینار کارشناسی ارشد رشته معدن : تحلیل پایداری تونل پارچین با بهره گرفتن از نرم افزار FLAC3D
  91. سمینار کارشناسی ارشد مهندسی معدن : طراحی سیستم بهینه ی ترابری در معدن سنگ آهن گل گهر 3
  92. سمینار کارشناسی ارشد رشته معدن : طراحی الگوی اتش باری معدن سنگ آهن چادرملو با رویکرد افزایش راندمان
  93. سمینار ارشد معدن : طراحی الگوی آتشباری معدن نمک سرخه با هدف کاهش سنگ های درشت
  94. سمینار کارشناسی ارشد رشته معدن : اکتشاف عناصر رایواکتیو و پرتوزای ناریگان یزد
  95. سمینار کارشناسی ارشد رشته معدن : بررسی عوامل موثر بر پدیده ها انفجار سنگ در تونل سوم کوهرنگ
  96. سمینار کارشناسی ارشد رشته معدن : محاسبه بهره وری در صنعت معدنکاری ایران
  97. سمینار کارشناسی ارشد رشته معدن : بهینه سازی الگوی آتشباری معدن مس سرچشمه با بهره گرفتن از شبکه های عصبی مصنوعی
  98. پایان نامه کارشناسی ارشد رشته معدن : تعیین محدوده نهایی معدن سنگ اهن سه چاهون به روش مخروط شناور
  99. سمینار کارشناسی ارشد رشته معدن : بررسی امکان تفکیک کانسار مس منطقه دره زرشک استان یزد با بهره گرفتن از دور سنجی
  100. سمینار کارشناسی ارشد رشته معدن : بهینه سازی الگوی آتشباری معدن سیمان تهران با بهره گرفتن از شبکه ها ی عصبی – فازی – ژنتیک
  101. سمینار کارشناسی ارشد رشته معدن : تحلیل پایداری و نگهداری تونل های آب بر
  102. سمینار کارشناسی ارشد رشته معدن -اکتشافات: بررسی اکتشافی و شناسایی نواحی امید بخش معدنی در زون چالوس – گرگان
  103. سمینار کارشناسی ارشد رشته معدن – اکتشاف: بررسی اکتشافی کانسارهای آهن همدان
  104. سمینار کارشناسی ارشد رشته معدن – اکتشاف: بررسی دورسنجی RS و سیستم اطلاعات جغرافیایی GIS در اکتشاف
  105. سمینار کارشناسی ارشد رشته معدن – اکتشاف:   بررسی کانسارهای فسفات از نظر شناخت و اکتشاف
  106. سمینار کارشناسی ارشد رشته معدن – استخراج:   حفر، کنترل و نگهداری تونلها در زمینهای آماسی و مچاله شونده
  107. سمینار کارشناسی ارشد رشته معدن – استخراج:  روش های تخریب بنا با مواد منفجره
  108. سمینار کارشناسی ارشد رشته معدن – اکتشاف:  بهره گیری از روش (Data Envelopment Analysis) دانش سنجش عملکرد، در کارخانه سیمان خزر (لوشان)
  109. پایان نامه کارشناسی ارشد رشته معدن : بهینه سازی پارامترهای الگوی آتشباری معدن شماره1 سنگ آهن گل گهر سیرجان
  110. پایان نامه ارشد مهندسی معدن: فراوری زغال معدن زیرآب به روش فلوتاسیون و تأثیر اندازه ذرات روی سنتیک فلوتاسیون زغال
  111. پایان نامه ارشد مهندسی معدن: امکان سنجی فرآوری کانه سخت منگنز جیرفت
  112. دانلود پایان نامه ارشد : ارزیابی پتانسیل روانگرایی در محدوده سازه ­های زیرزمینی
  113. دانلود پایان نامه ارشد : بهبود کارآیی مدار خردایش و پرعیار سازی اولیه خط چهارم تولید کنسانتره شرکت معدنی و صنعتی گل گهر
  114. دانلود پایان نامه ارشد : بهینه سازی پارامترهای عملیاتی لیچینگ مخزنی کنسانتره طلا
  115. دانلود پایان نامه ارشد : بررسی‌ توزیع مکانی نشت هیدروکربن در پالایشگاه تهران
  116. دانلود رایگان متن کامل پایان نامه ارشد : امکان سنجی فرآوری کانه سخت منگنز جیرفت
  117. دانلود پایان نامه ارشد: تجمع كوتاه مدت عناصر سنگین در اعماق مختلف خاك سطحی شهر سبزوار
  118. پایان نامه : ارائه مدل سرعت لرزه ای ناحیه ای در سازندهای منتخب دوران کرتاسه -گورپی، ایلام – سروک و کژدمی- در منطقه خلیج فارس جهت توصیف دقیق تر مخازن هیدروکربوری
  119. دانلود پایان نامه ارشد:پیش‌بینی آلودگی عناصر سنگین در پساب اسیدی رودخانه شور معدن مس پورفیری سرچشمه با بهره گرفتن از هوش مصنوعی
  120. دانلود پایان نامه : طراحی مجدد تیکنر نرخ بالا کارخانه آبگیری از باطله جهت بهینه‌سازی بازیابی آب در مجتمع سنگ آهن گل گهر
  121. پایان نامه ارشد: فراوری زغال معدن زیرآب به روش فلوتاسیون و تأثیر اندازه ذرات روی سنتیک فلوتاسیون زغال
  122. دانلود پایان نامه ارشد : افزایش کیفیت مقاطع برانبارش توسط روش تصویر سازی سطح برانبارش مشترک
  123. دانلود پایان نامه ارشد : افزایش کیفیت مقطع کوچ زمانی توسط روش تصویر سازی سطح برانبارش
  124. دانلود پایان نامه ارشد : امکان‌سنجی مالی- اقتصادی استخراج معدن شن و ماسه – مطالعه موردی معدن شاه‌کوه
  125. پایان نامه ارشد:بررسی و اصلاح سیستم نمونه ­برداری و موازنه­ ی جرم در کارخانه­ ی فرآوری مگنتیت گل­گهر سیرجان
  126. پایان نامه ارشد:بررسی روش میکروامولسیون در فرایند استخراج با حلال؛ مطالعه ی موردی بازیابی گالیم از محلول آلومینات سدیم
  127. دانلود پایان نامه ارشد:بررسی پارامترهای هیدرولوژیکی آبخوان آزاد در مدل آزمایشگاهی
  128. پایان نامه ارشد:طراحی سلول فلوتاسیون ستونی در مقیاس پایلوت بر مبنای نتایج آزمایشگاهی
  129. دانلود پایان نامه ارشد : تخمین قابلیت انفجار در روش تخریب طبقات فرعی
  130. دانلود پایان نامه ارشد : تخمین قابلیت انفجار در معادن سنگ آهن بلوک ایران مرکزی با تأکید بر سرعت امواج طولی
  131. دانلود پایان نامه ارشد : تعیین زاویه شیب سرتاسری معدن تاگویی 2 بوکسیت جاجرم
  132. دانلود پایان نامه ارشد : طراحی هندسی محدوده­ نهایی معدن تاگویی 4 بوکسیت جاجرم
  133. پایان نامه افزایش کیفیت مقاطع لرزه­ای و کاهش حساسیت کوچ عمقی به مدل سرعت در پردازش به روش برانبارش سطح پراش مشترک مبتنی بر مدل
  134. پایان نامه ژئوفیزیک:بهبود مدل­سازی معکوس داده­های الکترومغناطیس هوابرد حوزه فرکانس با تعیین مدل­اولیه مناسب و اعمال قید­های عمقی و هموارساز

پایان نامه های دانلودی رشته مهندسی شیمی

  1. دانلود رایگان متن کامل پایان نامه ارشد : بهینه سازی فرآیند بیولیچینگ سرباره مجتمع مس سرچشمه
  2. پایان نامه ارشد رشته مهندسی شیمی نساجی الیاف : بررسی و پیشرفت ها ی تولید الیاف
  3. دانلود پایان نامه ارشد رشته مهندسی شیمی : انجام واكنش های شیمیایی در رآكتورهای پلاسما
  4. دانلود پایان نامه ارشد رشته مهندسی شیمی : طراحی مفهوم برج های تقطیر
  5. پایان نامه کارشناسی ارشد مهندسی شیمی: مدلسازی فرآیند تراوش تبخیری
  6. پایان نامه کارشناسی ارشد مهندسی شیمی: جداسازی نیتروژن از گاز طبیعی
  7. پایان نامه کارشناسی ارشد مهندسی شیمی: شبیه سازی خشک کن بستر عمیق
  8. پایان نامه ارشد مهندسی شیمی: حذف یون های نقره از پساب های خطوط تولید آیینه
  9. پایان نامه کارشناسی ارشد مهندسی شیمی با موضوع سیالات فوق بحرانی
  10. پایان نامه کارشناسی ارشد مهندسی شیمی با موضوع فرآیندهای غشایی کلر آلکالی
  11. پایان نامه ارشد مهندسی شیمی: شیرین سازی آب به روش الکترو دیالیز
  12. پایان نامه کارشناسی ارشد مهندسی شیمی: کاربردهای زئولیت ها در صنایع
  13. پایان نامه کارشناسی ارشد مهندسی شیمی: مدلسازی غشایی تصفیه آب همراه
  14. پایان نامه ارشد مهندسی شیمی: مطالعه مخاطرات واحدهای اوره و آمونیاک
  15. پایان نامه ارشد مهندسی شیمی: نیترات زدایی از آب آشامیدنی به روش تبادل یونی
  16. پایان نامه کارشناسی ارشد مهندسی شیمی: کاربرد و عملکرد پیل سوختی
  17. پایان نامه کارشناسی ارشد مهندسی شیمی: طراحی مفهومی برج های تقطیر
  18. پایان نامه ارشد مهندسی شیمی: شبیه سازی سینتیکی تولید متانول از گاز سنتز
  19. پایان نامه کارشناسی ارشد مهندسی شیمی با موضوع تکنولوژی GTL
  20. پایان نامه کارشناسی ارشد مهندسی شیمی: اصول پوشش دهی به روش A.C.C
  21. پایان نامه کارشناسی ارشد مهندسی شیمی: بررسی پدیده های انتقال در شرایط خلاء
  22. پایان نامه کارشناسی ارشد مهندسی شیمی: بررسی انتشار گاز کلر در حوادث
  23. پایان نامه کارشناسی ارشد مهندسی شیمی: بررسی سینتیکی تولید گاز سنتز
  24. پایان نامه ارشد مهندسی شیمی: شبیه سازی فرآیند تولید ترشری آمیل متیل اتر
  25. پایان نامه ارشد مهندسی شیمی: بررسی امکان بکارگیری فرآیندهای جداسازی غشایی
  26. پایان نامه ارشد مهندسی شیمی: بررسی سینتیک انحلال پلی وینیل الکل
  27. پایان نامه کارشناسی ارشد مهندسی شیمی: بررسی ضریب نفوذ گازها در نفت خام
  28. پایان نامه کارشناسی ارشد مهندسی شیمی: بررسی مبدل های کاتالیستی خودرو
  29. پایان نامه کارشناسی ارشد مهندسی شیمی: انتخاب مدل برای انحلال ذرات معلق
  30. سمینار کارشناسی ارشد شیمی: شبیه سازی و بهینه سازی راکتورهای شکست حرارتی
  31. دانلود سمینار کارشناسی ارشد مهندسی شیمی: مدل سازی اسمز معکوس
  32. پایان نامه کارشناسی ارشد شیمی: نانوتکنولوژی و کاربرد آن در فرایندهای شیمی
  33. پایان نامه ارشد رشته شیمی: مدلسازی سنتز مستقیم دی متیل اتر از گاز سنتز
  34. پایان نامه کارشناسی ارشد رشته شیمی: مدلسازی استخراج روغن از دانه آفتابگردان
  35. سمینارکارشناسی ارشد رشته شیمی : نانوتکنولوژی و کاربرد آن در فرایند های شیمی و الکتروشیمی
  36. سمینار کارشناسی ارشد مهندسی شیمی : تولید انواع روغنهای روانکار و کاربردهای آن
  37. سمینار کارشناسی ارشد رشته شیمی : بررسی و مطالعه فرایند تولید سوخت های مصنوعی به روش GTL
  38. سمینار کارشناسی ارشد رشته شیمی : ارزیابی عملکرد فرایند ترسیب الکتروشیمیایی در حذف کروم از فاضلاب های صنعتی
  39. سمینار کارشناسی ارشد رشته شیمی: بررسی روش های بیولوژیکی برای حذف آلاینده ها
  40. سمینار کارشناسی ارشد رشته شیمی : روش های بیولوژیکی در حذف سولفور از گاز طبیعی
  41. سمینار کارشناسی ارشد رشته شیمی : سیالات فوق بحرانی
  42. سمینار کارشناسی ارشد رشته شیمی : مدل Rate-based در ستون های تقطیر واکنشی
  43. سمینار کارشناسی ارشد رشته شیمی : فرایند های غشایی کلر آلکالی
  44. سمینار کارشناسی ارشد رشته شیمی : جداسازی آمونیاک از پساب توسط بیوفیلتر
  45. سمینار کارشناسی ارشد رشته شیمی : مطالعه فرایند ISOMAX و بررسی مدلسازی سینتیکی واکنش
  46. سمینار کارشناسی ارشد رشته شیمی : بررسی سینتیکی تولید گاز سنتز به روش اکسیداسیون جزئی متان
  47. سمینار کارشناسی ارشد رشته شیمی : بهینه سازی تولید اتیلن و پروپلین در مجتمع پتروشیمی مارون
  48. سمینار کارشناسی ارشد رشته شیمی :کاربرد MTBE به عنوان جایگزین تترااتیل سرب در بنزین
  49. سمینار کارشناسی ارشد رشته شیمی : ارزیابی پیامد انتشار گاز کلر در جوامع شهری و صنعتی
  50. سمینار کارشناسی ارشد مهندسی شیمی : ارزیابی فن آوری GTL
  51. سمینار کارشناسی ارشد رشته شیمی : تکنولوژی GTL
  52. سمینار کارشناسی ارشد رشته شیمی :بررسی پدیده های انتقال در شرایط خلا
  53. سمینار کارشناسی ارشد رشته شیمی : بررسی فرایند های خالص سازی گاز طبیعی
  54. سمینار کارشناسی ارشد رشته شیمی : بررسی انتشار گاز کلر در حوادث
  55. سمینار کارشناسی ارشد رشته شیمی : بررسی فرایند های تولید و جداسازی آروماتیک ها
  56. سمینار کارشناسی ارشد رشته شیمی : کاربرد و عملکرد پیل سوختنی
  57. سمینار کارشناسی ارشد رشته شیمی : بررسی مبدل های کاتالیستی خودرو
  58. سمینار کارشناسی ارشد رشته شیمی : بررسی سینتیک انحلال پلی وینیل الکل
  59. سمینار کارشناسی ارشد رشته شیمی : نیترات زدایی از آب آشامیدنی به روش تبادل یونی
  60. سمینار کارشناسی ارشد رشته شیمی : رطوبت زدایی از گاز با بهره گرفتن از جاذب های جامد
  61. سمینار کارشناسی ارشد مهندسی شیمی : تجزیه آمونیاک از پساب و آب به روش فتوکاتالیستی
  62. سمینار کارشناسی ارشد رشته شیمی: تصفیه شیرابه در پیل های سوختی میکروبی و تولید همزمان الکتریسیته
  63. سمینار کارشناسی ارشد رشته شیمی : بررسی راکتور های حبابی و فرایند های GTL
  64. سمینار کارشناسی ارشد رشته شیمی – محیط زیست: ارزیابی پیامد انتشار گاز کلر در جوامع شهری و صنعتی
  65. سمینار کارشناسی ارشد رشته شیمی – محیط زیست: ارزیابی عملکرد فرآیند ترسیب الکتروشیمیایی در حذف کروم از فاضلاب های صنعتی
  66. سمینار کارشناسی ارشد رشته شیمی – فرآیند: بررسی انجام واكنش های شیمیایی در رآكتورهای پلاسمای همراه پالس
  67. سمینار کارشناسی ارشد رشته شیمی – فرآیند: بررسی فرآیند های تولید و جداسازی آروماتیک ها
  68. سمینار کارشناسی ارشد رشته شیمی – فرآیند: بررسی فرآیندهای خالص سازی گاز طبیعی
  69. سمینار کارشناسی ارشد رشته شیمی – فرآیند: بررسی و مطالعه فرآیند تولید سوخت های مصنوعی به روش GTL
  70. سمینار کارشناسی ارشد رشته شیمی – محیط زیست: تصفیه شیرآبه در پیل های سوختی میکروبی و تولید همزمان الکتریسیته
  71. سمینار کارشناسی ارشد رشته شیمی – فرآیند: کاربرد MTBE بعنوان جایگزین تترااتیل سرب در بنزین: ملاحظات اقتصادی و زیست محیطی
  72. سمینار کارشناسی ارشد رشته شیمی – فرآیند: کاربرد و عملکرد پیل سوختی
  73. پایان نامه کارشناسی ارشد رشته شیمی : پیشرانه های موشكی مایع ، ژل و هیبرید
  74. پایان نامه کارشناسی ارشد رشته شیمی : مطالعه تجربی جداسازی اتیلن گلیکول از پسابهای آبی بوسیله فرایند تقطیر غشایی
  75. سمینار ارشد مهندسی شیمی: بررسی تأثیر رسوب گذاری در اصلاح شبکه مبدل های حرارتی
  76. دانلود سمینار ارشد مهندسی شیمی: ارائه یک الگوی بهینه برای تولید حلال های ویژه
  77. سمینار ارشد مهندسی شیمی طراحی فرآیند: اکسایش زوجی متان در راکتور پلاسمای پالسی
  78. پایان نامه کارشناسی ارشد مهندسی شیمی: بررسی تجهیزات رکوپراتور برای بازیابی انرژی
  79. سمینار کارشناسی ارشد مهندسی شیمی: بررسی فعالیت کاتالیست های اسید جامد مصرفی
  80. سمینار ارشد مهندسی شیمی طراحی فرآیند: بررسی روش های بازیافت گازهای ارسالی به فلر
  81. پایان نامه ارشد مهندسی شیمی فرآیند: شبیه سازی نرخ اتلاف انرژی در سیستم اختلاط مایع
  82. سمینار ارشد مهندسی شیمی فرآیند: محاسبات طراحی فلر در صنایع نفت و گاز و پتروشیمی
  83. پایان نامه ارشد مهندسی شیمی محیط زیست: مدلسازی ریاضی گازشوی بیولوژیکی
  84. سمینار ارشد مهندسی شیمی: مقایسه فنی و اقتصادی روش های مختلف مرسوم در فرازآوری مصنوعی
  85. سمینار ارشد مهندسی شیمی فرآیند: مدلسازی ریاضی بازیافت انرژی از گازهای زاید پالایشگاهی
  86. پایان نامه ارشد مهندسی شیمی: تجربه آمونیاک از پساب و آب به روش فتو کاتالیستی
  87. سمینار ارشد مهندسی شیمی: بررسی کاربردهای نانوتکنولوژی در صنایع بالادستی نفت
  88. سمینار ارشد مهندسی شیمی طراحی فرآیند: بررسی اکسرژی واحد تقطیر اتمسفریک پالایشگاه تبریز
  89. پایان نامه ارشد مهندسی شیمی: بررسی آنالیز پیامد تانک آمونیاک پتروشیمی کرمانشاه
  90. سمینار ارشد مهندسی شیمی فرآیند: بررسی انجام واکنش های شیمیایی در راکتورهای پلاسما
  91. سمینار ارشد مهندسی شیمی: شبیه سازی شبکه ای به منظور تعیین مقدار نفت باقیمانده در مقیاس خلل و فرج
  92. پایان نامه ارشد مهندسی شیمی مهندسی فرآیند: بررسی عوامل موثر بر عمر آجرهای نسوز
  93. سمینار ارشد مهندسی شیمی فرآیند: مدلسازی شبکه ای جریان سیال در بسترهای فشرده
  94. پایان نامه مهندسی شیمی فرآیند: شبیه سازی فرایند بازیابی ضایعات روغن های خودرو
  95. سمینار ارشد مهندسی شیمی: کریستالیزاسیون اسیدفسفریک به وسیله سرمایش مستقیم
  96. سمینار ارشد مهندسی شیمی: طراحی بخش سرد واحد الفین برای توالی های مختلف برج ها
  97. پایان نامه مهندسی شیمی: تعیین تجربی پارامترهای موثر بر عملکرد خشک کن پاششی
  98. سمینار ارشد مهندسی شیمی: بررسی واکنش در شرایط اضطراری در مجتمع های پتروشیمی
  99. پایان نامه ارشد مهندسی شیمی: پارامترهای موثر بر طراحی بیوراکتور حذف آمونیاک
  100. سمینار کارشناسی ارشد مهندسی شیمی فرآیند: بررسی فرآیند غشایی تصفیه آب همراه نفت
  101. پایان نامه ارشد مهندسی شیمی: ارائه یک مدل ریاضی به منظور بررسی اثر گیاهان در پاکسازی خاک های آلوده
  102. پایان نامه ارشد مهندسی شیمی طراحی فرآیند: بررسی راکتورهای حبابی و فرآیندهای GTL
  103. سمینار ارشد مهندسی شیمی فرآیند: آشنایی با واحد غلظت شکن پالایشگاه نفت بندرعباس
  104. سمینار ارشد مهندسی شیمی: بررسی پساب های صنایع پتروشیمی و امکان تصفیه آن به روش استخراج مایع
  105. سمینار ارشد برق الکترونیک: طراحی و پیاده سازی پروتکل انتخاب مجموعه مسیر منفصل بهینه
  106. دانلود متن کامل پایان نامه کارشناسی ارشد رشته شیمی درباره پیرانها
  107. دانلود پایان نامه رشته شیمی با موضوع تكنولوژی و كاربرد درزگیرهای پلی اورتان
  108. پایان نامه ارشد رشته شیمی: مقایسه فرآیندهای نفوذ فیزیکی و واکنش سطحی در کریستالیزاسیون قند
  109. سمینار ارشد رشته شیمی طراحی فرآیند: مدلسازی استخراج از دانه های گیاهی با بهره گرفتن از سیال فوق بحرانی دی اکسید کربن
  110. پایان نامه ارشد رشته شیمی محیط زیست: شبیه سازی راکتورهای حلقوی هوایی با بهره گرفتن از دینامیک محاسباتی سیال
  111. دانلود سمینار کارشناسی ارشد مهندسی شیمی فرآیند: ارزیابی فن آوری GTL
  112. پایان نامه ارشد مهندسی شیمی فرآیند: بازیابی سرب از پسماند باقیمانده از کارخانجات سرب و روی
  113. سمینار ارشد مهندسی شیمی: اهمیت و لزوم ارزیابی پیامد انتشار گاز کلر در مجتمع های شهری و صنعتی
  114. پایان نامه ارشد مهندسی شیمی فرآیند: بررسی امکان به کارگیری فرآیندهای جداسازی غشایی
  115. پایان نامه کارشناسی ارشد مهندسی شیمی طراحی فرآیند: ارائه مدلی برای مدیریت HSE
  116. پایان نامه ارشد رشته شیمی فرآیند: شبیه سازی راکتور پیرولیز پروپان به روش CFD
  117. سمینار ارشد مهندسی شیمی محیط زیست: بررسی روش های بیولوژیکی برای حذف آلاینده ها
  118. پایان نامه ارشد مهندسی شیمی: بررسی انتقال جرم درون قطرات و ارائه یک مدل جدید
  119. سمینار ارشد رشته شیمی فرآیند: مدلسازی جداسازی غشایی LPG از جریان های گازی با بهره گرفتن از شبکه عصبی
  120. پایان نامه ارشد مهندسی شیمی: بهینه سازی و طرح فرایند پوشش خودرویی هوشمند با قابلیت خود ترمیمی
  121. سمینار ارشد مهندسی شیمی محیط زیست: شبیه سازی هیدرودینامیكی راكتورهای هوایی با بهره گرفتن از cfd
  122. سمینار ارشد رشته شیمی طراحی فرآیند: شبیه سازی نشست کک در مبدل خط انتقال واحد اولفین توسط نرم افزار Fluent
  123. سمینار ارشد مهندسی شیمی طراحی فرآیند: بررسی و مطالعه فرآیند تولید سوخت های مصنوعی به روش GTL
  124. پایان نامه ارشد مهندسی شیمی: ارائه و حل عددی یک مدل ریاضی در رهایش کنترل شده داروی ایبوپروفن
  125. پایان نامه کارشناسی ارشد مهندسی شیمی فرآیند: مدلسازی شبکه ای جریان در یک بستر فشرده
  126. سمینار ارشد رشته شیمی فرآیند: اصول طراحی خشک کن های پاششی برای خشک کردن فرآورده های بیولوژیک
  127. پایان نامه ارشد رشته شیمی فرآیند: بهینه سازی واحد شکست کاتالیستی بستر سیال با بهره گرفتن از الگوریتم ژنتیک
  128. سمینار ارشد مهندسی شیمی فرآیند: افزایش راندمان حذف رطوبت از گاز توسط دسیکنت ها از طریق افزودنی به آن ها
  129. پایان نامه ارشد رشته شیمی طراحی فرایند: اصلاح شبکه مبدل های حرارتی واحد تقطیر پالایشگاه تهران
  130. سمینار ارشد مهندسی شیمی: ارزیابی عملکرد فرآیند ترسیب الکتروشیمیایی در حذف کروم از فاضلاب های صنعتی
  131. دانلود سمینار ارشد مهندسی شیمی فرآیند: مدل rate-based در ستون های تقطیر واکنشی
  132. سمینار ارشد مهندسی شیمی: تجزیه و تحلیل اثرات و عواقب حوادث نامطلوب در یکی از مجتمع های پتروشیمی ایران
  133. پایان نامه ارشد رشته شیمی مهندسی فرایند: تاثیر تغییر پارامترهای عملیاتی بر فرآیند پیش تفكیك میعانات گازی
  134. سمینار ارشد رشته شیمی طراحی فرآیندهای نفت: بهینه سازی تولید اتیلن و پروپیلن در مجتمع پتروشیمی مارون
  135. سمینار ارشد مهندسی شیمی فرآیند: بررسی مدل سازی دینامیکی واکنش جفت شدن اکسایشی متان
  136. سمینار ارشد مهندسی شیمی مهندسی فرآیند: بررسی فرآیندهای خالص سازی گاز طبیعی
  137. سمینار ارشد مهندسی شیمی مهندسی فرآیند: جداسازی آرسنیک و جیوه از آب های فرآیندی
  138. سمینار ارشد مهندسی شیمی مهندسی فرآیند: بررسی فرآیندهای تولید و جداسازی آروماتیک ها
  139. سمینار ارشد مهندسی شیمی مهندسی فرآیند: شبیه سازی واحد غلظت شکن و ارائه راهکار جهت افزایش بنزین
  140. پایان نامه ارشد مهندسی شیمی محیط زیست: مدلسازی ریاضی پیل های سوختی میکروبی و تولید همزمان الکتریسیته
  141. پایان نامه ارشد مهندسی شیمی فرآیند: تبدیل مستقیم متان به اتیلن با بهره گرفتن از دو رآکتور کاتالیستی
  142. پایان نامه ارشد مهندسی شیمی طراحی فرآیند: کریستالیزاسیون اسیدفسفریک به وسیله سرمایش مستقیم
  143. سمینار ارشد مهندسی شیمی طراحی فرآیند: مدلسازی و شبیه سازی نشست کک در مبدل خط انتقال
  144. سمینار ارشد رشته شیمی محیط زیست: مدلسازی و شبیه سازی فیلتر بیولوژیکی برای حذف آلاینده های آلی
  145. پایان نامه ارشد مهندسی شیمی: آنالیز ریسک پذیری مخازن گازهای سمی در مجتمع پتروشیمی شیراز
  146. سمینار ارشد مهندسی شیمی فرایند: بررسی جداسازی LPG از جریانات گازی توسط فرایند غشایی
  147. سمینار ارشد مهندسی شیمی مهندسی فرآیند: تولید انواع روغن های روانکار و کاربردهای آن
  148. پایان نامه ارشد رشته شیمی فرآیند: کاربرد CFD در مدل سازی دانه کاتالیست متخلخل تیتانیت پروسکایت
  149. سمینار ارشد مهندسی شمی فرآیند: طراحی و بهینه سازی برج تقطیر جداسازی اورتو زایلین از مخلوط زایلین ها
  150. پایان نامه ارشد رشته مهندسی شیمی: مدلسازی هیدروژناسیون روغن های نباتی در جهت کاهش ایزومر ترانس
  151. سمینار ارشد مهندسی شیمی طراحی فرآیند: بررسی تولید گاز سنتز در راکتورهای پلاسمای مایکروویو
  152. سمینار ارشد مهندسی شیمی فرآیند: عوامل موثر بر راندمان کوره های دوار سیمان و آنالیز اکسرژی در سیستم پخت سیمان هگمتان
  153. سمینار ارشد رشته شیمی طراحی فرایند: مدلسازی کاهش فعالیت کاتالیست Pt – Sn/Al2O3 فرآیند دهیدروژناسیون
  154. پایان نامه ارشد مهندسی شیمی فرآیند: ارزیابی و ارتقای قابلیت اطمینان و در دسترس بودن یک واحد صنعتی
  155. پایان نامه ارشد مهندسی شیمی محیط زیست: جداسازی آمونیاک از پساب توسط بیوفیلتر
  156. پایان نامه ارشد مهندسی شیمی فرآیند: بررسی سینتیکی تولید گاز سنتز به روش اکسیداسیون جزئی متان
  157. سمینار ارشد رشته شیمی فرآیند: بررسی پدیده کوالسنس در سیستم های پراکنده مایع و مایع بهم خور
  158. پایان نامه ارشد مهندسی شیمی فرآیند: بررسی تولید گاز سنتز در راکتور کروناس پالسی
  159. سمینار ارشد رشته شیمی محیط زیست: ارتقاء کیفیت پساب خروجی از برکه های تثبیت به کمک مواد منعقد کننده معدنی
  160. سیمنار ارشد مهندسی شیمی طراحی فرآیند صنایع نفت: طراحی شبکه مبدل های حرارتی واحد تولید کمپلکس PVC
  161. پایان نامه ارشد مهندسی شیمی فرآیند: مدلسازی استفاده از فن آوری غشا در تصفیه گاز طبیعی
  162. سمینار ارشد مهندسی شیمی: مدلسازی و شبیه سازی راکتور دوغابی سنتز فیشر – تروپش جهت تولید سوخت های سنتزی
  163. سمینار ارشد مهندسی شیمی طراحی فرآیند: مدلسازی فرایند حلالیت ایبوپروفن در دی اکسید کربن فوق بحرانی
  164. پایان نامه ارشد مهندسی شیمی: مدلسازی و شبیه سازی رآکتور واکنش زوج شدن اکسیداسیونی متان
  165. پایان نامه ارشد مهندسی شیمی فرآیند: مدلسازی و شبیه سازی شکست آسفالتین با مدل سینتیکی تکه ای
  166. سمینار ارشد مهندسی شیمی فرآیند: ساخت مدل آزمایشگاهی و مدل سازی دینامیک سیالات محاسباتی اختلاط
  167. سمینار ارشد رشته شیمی فرآیند: اندازه گیری ضریب نفوذ گازهای N2 و CO2 و CH4 در هیدروكربن های نفتی
  168. پایان نامه ارشد مهندسی شیمی محیط زیست: بررسی و تحلیل پیامد حادثه انتشار آمونیاک از مخازن آمونیاک
  169. سمینار ارشد رشته شیمی طراحی فرایند: مدلسازی سینتیکی واکنش های فرایند ISOMAX جهت ارتقاء برش های سنگین نفتی
  170. سمینار ارشد مهندسی شیمی: مدلسازی ریاضی غیر فعال شدن سولفات زیركونیای اصلاح شده با پلاتین در فرایند الکیلاسیون
  171. پایان نامه ارشد مهندسی شیمی فرآیند: مدلسازی سینتیکی واکنش های فرآیند visbreaking
  172. پایان نامه ارشد رشته شیمی محیط زیست: حذف فتوکاتالیستی آمونیاک از پساب های صنعتی به وسیله نانو ذرات TiO2
  173. سمینار ارشد رشته شیمی محیط زیست: تصفیه شیرابه در پیل های سوختی میکروبی و تولید همزمان الکتریسیته
  174. پایان نامه ارشد مهندسی شیمی فرآیند: مدلسازی تصفیه فاضلاب حاوی آمونیم با روش ترکیبی نیتریفیکیشن جزئی
  175. پایان نامه ارشد رشته شیمی: شبیه سازی فرآیند تولید متیل استات با بهره گرفتن از Rate-Baded Model
  176. سمینار ارشد مهندسی شیمی طراحی فرآیند: مدلسازی و شبیه سازی فرآیند جذب سطحی در مرکاپتان زدایی
  177. سمینار ارشد مهندسی شیمی طراحی فرایندهای نفتی: مدلسازی و تحلیل ترمودینامیکی فرآیند خشک کردن
  178. پایان نامه ارشد مهندسی شیمی فرآیند: مدلسازی ریاضی راکتور بستر ثابت تبدیل مستقیم متان به متانول
  179. پایان نامه ارشد رشته شیمی محیط زیست: مدلسازی راکتور اختلاط کامل لجن فعال در تصفیه پساب شهری
  180. سمینار ارشد رشته شیمی: بررسی و انجام عملیات DATA RECONCILIATION در کوره های شکست حرارتی
  181. پایان نامه ارشد مهندسی شیمی طراحی فرآیند: مدلسازی ریاضی از استخراج فوق بحرانی روغن آفتابگردان
  182. سمینار ارشد رشته شیمی: مدلسازی ریاضی و تعیین پارامترهای موثر در فرآیند خشک کردن ضایعات سبزیجات
  183. سمینار ارشد رشته شیمی: طراحی و شبیه سازی مخلوط کن های استاتیکی و تدوین الگوریتم به کارگیری آن ها در مبدل های حرارتی
  184. سمینار ارشد مهندسی شیمی طراحی فرآیند: مطالعه فرایند ISOMAX و بررسی مدلسازی سینتیکی واکنش
  185. سمینار ارشد مهندسی شیمی طراحی فرایند: بررسی کیفی علل ترک در سیلر درزگیرهای مصرفی در خودروسازی ها
  186. پایان نامه ارشد مهندسی شیمی محیط زیست: مدلسازی انتشار گاز کلر در تاسیسات تصفیه خانه ها
  187. سمینار ارشد مهندسی شیمی طراحی فرآیندهای نفت: مدلسازی ریاضی راکتورهای شعاعی جهت تولید استایرین
  188. سمینار ارشد مهندسی شیمی مهندسی فرآیند: کاربرد MTBE به عنوان جایگزین تترااتیل سرب در بنزین
  189. پایان نامه ارشد رشته شیمی طراحی فرآیندهای صنایع نفت: مدل سازی حلالیت گاز CO2 در مخلوط حلال های آمین دار
  190. سمینار ارشد مهندسی شیمی محیط زیست: روش های بیولوژیكی در حذف سولفور از گاز طبیعی
  191. پایان نامه ارشد مهندسی شیمی: بهینه سازی تولید و مصرف انرژی آسیاب های کارخانه سیمان هگمتان
  192. پایان نامه ارشد مهندسی شیمی: توسعه و تدوین الگوریتم طراحی مبدل های حرارتی فشرده پلیت – فین
  193. سمینار ارشد مهندسی شیمی محیط زیست: مقایسه کارایی و اقتصادی سیستم های اسمز معکوس و الکترودیالیز
  194. پایان نامه ارشد مهندسی شیمی: بررسی امکان جایگزینی ترکیبات آمین به جای DEA در فرایند شیرین سازی گازها
  195. سمینار ارشد رشته شیمی طراحی فرایندهای صنایع نفتی: شبیه سازی و بهینه سازی راکتور تولید بنزین از پلی اتیلن سنگین
  196. پایان نامه رشته شیمی : مطالعه اثرات استریو الكترونی بر روی رفتار صورت بندی های محوری و استوایی
  197. پایان نامه ارشد رشته شیمی : سنتز شیمیایی و شناسایی نانو­کامپوزیت­های پلی(3-متیل­تیوفن)/ SiO2
  198. دانلود پایان نامه ارشد رشته شیمی آلی : نانو آمیزه های جدید از کو پلی (اتر- اورتان) با الگوی نرم – سخت
  199. پایان نامه ارشد رشته شیمی آلی : طراحی و ساخت پلیمر قالب مولکولی ویژه با نانو ذرات سیلیکا
  200. پایان نامه ارشد رشته شیمی : طراحی و بهینه سازی تولید بیودیزل از روغن سبوس برنج به روش ترانس استریفیکاسیون
  201. پایان نامه ارشد رشته شیمی آلی : سنتز مشتق جدیدی از یک کتو دی آزیریدین از طریق آمیناسیون
  202. پایان نامه ارشد رشته شیمی آلی : محاسبات ab initio‌ و QSAR داروهای ضد سرطان كمپلكس های پلاتین و پالادیم
  203. دانلود پایان نامه رشته شیمی : مطالعه وابستگی کمی ساختار – فعالیت سری پیریمیدینو پیریمیدین ها
  204. پایان نامه ارشد رشته شیمی : محاسبات تابع چگالی خواص جذب 1-متیل-1-نیتروزواوره
  205. پایان نامه ارشد مهندسی نفت: استفاده از مدل‌سازی هوشمند در فرآیند طراحی و عیب یابی عملیات حفاری
  206. پایان نامه ارشد مهندسی نفت: افزایش کیفیت مقطع کوچ زمانی توسط روش تصویر سازی سطح برانبارش مشترک در حوزه دورافت مشترک
  207. دانلود پایان نامه ارشد: بررسی واکنش سه جزئی ایساتین، مالونیتریل و سیستم های انولیزه شونده
  208. دانلود پایان نامه ارشد : بررسی واکنش ترکیبات اسیدی آلی با استرهای استیلنی
  209. دانلود پایان نامه ارشد : مطالعه سینتیک جذب سطحی رنگ آزو نارنجی توسط خاک اصلاح شده
  210. دانلود پایان نامه ارشد : مطالعه حذف 2-پیکولین توسط کامپوزیت مس پلی اکریل آمید
  211. دانلود پایان نامه ارشد : پیش بینی عملکرد غشاهای اسمز معکوس با بهره گرفتن ازبهینه سازی، مدل سازی ریاضی و حل مدل به کمک روش های عددی
  212. دانلود پایان نامه ارشد : سنتز مشتقات نفتواکسازین ومشتقات سمی کاربازید
  213. دانلود رایگان متن کامل پایان نامه ارشد : بهینه سازی فرآیند بیولیچینگ سرباره مجتمع مس سرچشمه
  214. دانلود پایان نامه ارشد : مطالعات آزمایشگاهی شکست سنگ های آهکی توسط لیزر فیبری
  215. دانلود پایان نامه ارشد : بررسی تشکیل گونه منگنز-اکسو به وسیله منگنز پورفیرین : اوره-هیدروژن پروکسید
  216. دانلود پایان نامه ارشد : شبیه سازی و بهینه سازی راكتور بیولوژیكی تولیدكننده بوتانول
  217. دانلود پایان نامه ارشد : کنترل فرکانس میکروشبکهAC با بهره گرفتن از کنترلر PI فازی در مد جزیره ای
  218. پایان نامه کارشناسی ارشد:ارتقای روش های مختلف پیش بینی فشاربخار مواد مختلف
  219. پایان نامه ارشد : بررسی عملکرد حلال های مختلف جهت جذب دی اکسیدکربن در برج جذب بستر سیال
  220. دانلود پایان نامه : حذف فنول از پساب های صنعتی با بهره گرفتن از فناوری نانو
  221. دانلود پایان نامه : ساخت کامپوزیت پلی پیرول بر روی پلی وینیل الکل و کاربرد آن در حذف رنگ متیل اورانژ از محلول های آبی
  222. دانلود پایان نامه ارشد: اصلاح الکترود خمیرکربن با نانو ذرات SiO2 و کاربرد آن به عنوان زیست حسگر الکتروشیمیایی
  223. دانلود پایان نامه ارشد: کاربرد ضایعات چای بعنوان یک جاذب ارزان قیمت جهت استخراج منگنز از نمونه ­های غذایی
  224. پایان نامه : مدلسازی، شبیه سازی و بهینه سازی رآکتور بسترچکه-ای پتروشیمی جم به منظور هیدروژناسیون 1و3-بوتادین
  225. دانلود پایان نامه ارشد: مدلسازی QSAR سمیت مایعات یونی
  226. دانلود پایان نامه ارشد: مدلسازی خواص بحرانی مواد آلی
  227. دانلود پایان نامه ارشد: مدل‌سازی و شبیه‌سازی حذف فنل از پساب توسط بیوراکتور از نوع تماس دهنده غشایی
  228. پایان نامه ارشد: بررسی مواد تشکیل دهنده اسانس وعصاره چند گونه از گیاهان بومی شمال ایران مانند گونه گیاهی عشقه (Hedera Pastuchovii) ولیلکی ((GleditsiaCaspica وتعیین خواص ضدباکتریایی وآنتی اکسیدانی
  229. پایان نامه ارشد: بررسی برهمكنش كمپلكسهای ضد سرطان دی فنیل تین دی كلراید با بهره گرفتن از ذرات نانو با C.T DNA و دی متیل تین دی كلراید با F.S DNA
  230. پایان نامه اندازه گیری اسپکتروفوتومتریک مقادیر بسیار ناچیز پالادیوم در نمونه های مائی توسط تکنیک یک مرحله ای میکرواستخراج مایع – مایع پخشی در سرنگ
  231. پایان نامه ارشد: بررسی اثر امواج مایكروویو بر استخراج اسانس وتركیبات شیمیایی موجود در برخی نمونه های گیاهی
  232. دانلود پایان نامه ارشد: بهینه سازی فرایند واجذب WF6 بر روی نانوجاذب NaF
  233. پایان نامه ارشد: بررسی تخریب سونوشیمیایی مالاشیت سبزدرمحلول آبی در حضوررادیکالهای پرسولفات فعال شده توسط یونهای کبالت و آهن
  234. دانلود پایان نامه : مدلسازی، شبیه سازی و بهینه سازی رآکتور بسترچکه-ای پتروشیمی جم به منظور هیدروژناسیون 1و3-بوتادین
  235. دانلود پایان نامه ارشد درباره آنتالپی تبخیر
  236. دانلود پایان نامه ارشد:ساخت کامپوزیت پلی پیرول بر روی پلی ونیل الکل و کاربرد آن در حذف رنگ متیلن بلو از محلول های آبی
  237. پایان نامه ارشد:مدل‌سازی ریفرمر كاتالیستی مونولیتی خودگرمازا برای تولید هیدروژن برای پیل‌های سوختی
  238. دانلود پایان نامه ارشد : مدل سازی حذف یون کلرید از میعانات گازی با بهره گرفتن از نانوفیلتراسیون
  239. دانلود پایان نامه ارشد : مدلسازی ترکیبی فرازآوری با گاز جهت بررسی اثر دما و ترکیب گاز تزریقی
  240. دانلود پایان نامه ارشد : اثر مواد افزودنی بر مورفولوژی کریستال در فرآیند تبلور اگزالات کلسیم
  241. دانلود پایان نامه : مدل­سازی فرآیند تولید ترکیبات آلی با بهره گرفتن از سیستم پیل سوختی میکروبی معکوس
  242. دانلود پایان نامه ارشد : اصلاح خواص فیزیکی و شیمیایی عایق‌های رطوبتی
  243. دانلود پایان نامه ارشد : مطالعه تجربی و مدلسازی ریاضی خشک کن دوار صنعتی تولید دی کلسیم فسفات
  244. دانلود پایان نامه ارشد:ساخت غشا اولترا فیلتراسیون پلی اکریلونیتریل حاوی نانو ذرات TiO2 به منظور جداسازی پلی‌اکریل‌آمید کاتیونی از پساب کارخانه زغالشویی
  245. دانلود پایان نامه ارشد:سنتز و بررسی اثر فرآیند بر روی خواص فیزیکی و مکانیکی نانوکامپوزیت­های ترموپلاستیک پلی­یورتان- خاک رس اصلاح شده
  246. پایان نامه طراحی سیستم کنترل برای راكتور بستر سیال تولید پلی اتیل
  247. دانلود پایان نامه ارشد : مدل سازی سینتیک خشک کردن چای با بهره گرفتن از شبکه های عصبی مصنوعی
  248. دانلود پایان نامه ارشد : سنتز و بررسی اثرات ضد دردی مشتق جدید از خانواده دارویی فنسیكلیدینها
  249. دانلود پایان نامه ارشد : کاربرد شبکه های عصبی مصنوعی برای تشخیص مدل چاه های افقی
  250. دانلود پایان نامه ارشد : بررسی آزمایشگاهی اکسایش الکتروشیمیایی فنل برای تصفیه پساب
  251. دانلود پایان نامه ارشد : بررسی پارامترهای موثر بر تولید ژل آلومینا به روش سل- ژل
  252. پایان نامه : ساخت حسگر الکتروشیمیایی نانو ساختار جهت اندازه گیری میزان سم آلوده کننده آترازین موجود در آب و پساب ها
  253. دانلود پایان نامه ارشد : شبیه‌سازی دینامیکی خطوط لوله انتقال گاز در شرایط حاد برودتی
  254. دانلود پایان نامه : طراحی پایه‌ی حلقه‌ی دریزو و استفاده ‌از حلال هیدروکربنی در فرایند نم‌زدایی در پالایشگاه فراشبند
  255. دانلود پایان نامه ارشد : مدل جدید تراوایی برای غشاهای ماتریس آمیخته پرشده بانو ذرات تراوا
  256. پایان نامه : مدلسازی ریاضی سینتیک هسته گذاری و رشد نانو ذرات پلیمری در فرایند پلیمریزاسیون امولسیونی با بهره گرفتن از نتایج هدایت سنجی
  257. دانلود پایان نامه ارشد : بررسی اثر گلیکول ها و گلیکول اتر ها بر پدیده ی انسداد میعانی مدل سازی
  258. پایان نامه : ارزیابی و شناسایی مخاطرات فرآیندی واحد Utility پالایشگاه پنجم مجتمع گاز پارس جنوبی با بهره گرفتن از تکنیک HAZOP
  259. داملود پایان نامه ارشد : بررسی اثرات استخلاف آلکیل بر خواص ساختاری و الکترونی پلی تیوفن با بهره گرفتن از روش های آغازین و نظریه تابع چگالی
  260. دانلود پایان نامه:بررسی اثر غلظت سورفاکتنت پلی ونیل پیرولیدن pvp در اندازه نانو ذرات در پروسه تولید نانو دارو با بهره گرفتن از روش رسوب حلال ضد حلال در میکروکانالها
  261. دانلود پایان نامه : سنتز غربال های مولکولی سیلیکوآلومینو فسفات در ابعاد نانو و کاربردهای آن -در الکتروشیمی-
  262. دانلود پایان نامه : مطالعه آزمایشگاهی تولید اکسید آهن در مقیاس ریزساختاری با بهره گرفتن از روش ترسیب با ضد حلال فوق بحرانی
  263. پایان نامه ارشد : اندازه گیری ومقایسه مقادیر سرب وکادمیوم در زیتونهای سبز
  264. پایان نامه ارشد :به کارگیری N-گرافن دوپه شده با نانوذرات پلاتین و نانو کامپوزیت Pt-Fe
  265. دانلود پایان نامه ارشد : بهینه‌سازی شبکه مبدل‌های پیش‌گرم واحد تقطیر80 پالایشگاه آبادان
  266. دانلود پایان نامه ارشد:تهیه بیوگاز از پارچه های مواد پسماندی
  267. پایان نامه ارشد : پارامترهای موثر بر ساخت نانو کاتالیست Al2O3 – γ Ir
  268. دانلود پایان نامه ارشد : تهیه الکترود خمیر کربن اصلاح شده با مایع یونی واجد یون­های نیکل
  269. دانلود پایان نامه دکتری : تخریب زیستی اتیل مرکاپتان با بهره گرفتن از سیستم میکروبی تثبیت یافته
  270. پایان نامه ارشد: تولید پروتئین تک یاخته از تفاله نیشکر در تخمیر حالت جامد در بیورآکتور سینی دار
  271. دانلود پایان نامه ارشد : تجزیه‌ی الکتروشیمیایی فرمالدئید
  272. دانلود پایان نامه ارشد : سنتز نانو ذرات سیلیکون دی اکسید از ضایعات روغن سیلیکون با بهره گرفتن از روش تف زاد
  273. دنلود پایان نامه ارشد : مطالعه آزمایشگاهی پدیده ی سایش گاز حاوی شن و قطرات مایع در خطوط لوله
  274. دانلود پایان نامه ارشد : استفاده از مدل‌سازی هوشمند در فرآیند طراحی و عیب یابی عملیات حفاری
  275. دانلود پایان نامه : تولید بیو پلیمر پلی هیدروکسی آلکانوآتها وبررسی امکان استفاده آنها در نانوکامپوزیتهای پلیمری
  276. پایان نامه ارشد: ارزیابی و شناسایی مخاطرات فرآیندی واحد Utility پالایشگاه پنجم مجتمع گاز پارس جنوبی
  277. پایان نامه ارشد: بررسی اثر امواج مایكروویو بر استخراج اسانس و تركیبات شیمیایی موجود در برخی نمونه های گیاهی
  278. پایان نامه ارشد: بررسی برهمكنش كمپلكس های ضد سرطان دی فنیل تین دی كلراید با بهره گرفتن از ذرات نانو
  279. پایان نامه ارشد: بررسی تخریب سونوشیمیایی مالاشیت سبز در محلول آبی در حضور رادیکال های پرسولفات فعال شده
  280. پایان نامه ارشد: بررسی کارآیی نانوذرات تیتانیوم دی اکسید تثبیت شده در حذف کلرامفنیکول بعنوان یک آلاینده مدل از ترکیبات دارویی
  281. پایان نامه ارشد: بررسی فعالیت نانوکاتالیست آندی بر پایه پلاتین جهت کاربرد در پیل های سوختی الکلی مستقیم
  282. پایان نامه ارشد : شبیه سازی پدیده ی کشش سطحی دینامیکی در سیستم های نفت-حلال بر اساس فرآیند نفوذ
  283. پایان نامه ارشد: تهیه الکترود خمیر کربن اصلاح شده با مایع یونی واجد یون­ های نیکل و کاربرد آن برای اکسایش الکتروکاتالیزی متانول و فرمالدهید
  284. پایان نامه ارشد: تهیه و تعیین مشخصات نانوکامپوزیت های زیست تجزیه پذیر نشاسته و پلی وینیل الکل و کادمیم سولفید
  285. پایان نامه ارشد: مطالعه ترمودینامیكی جذب برخی یون های فلزی بر روی برگ درخت Ziziphus اصلاح شده با نانوگرافن
  286. پایان نامه ارشد: مقایسه کارآیی پوشش‌های کروم و کروم‌ اکسید برای جلوگیری از خوردگی فولاد کورتن در آب دریا
  287. پایان نامه ارشد: مدلسازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب
  288. پایان نامه ارشد: شناسایی اجزای تشکیل دهنده اسانس و بررسی اثرات ضد میکروبی دو گیاه Morina persica L. و Physospermum cornubiense (L.) DC
  289. پایان نامه ارشد: شناسایی سرطان ریه با بهره گرفتن از نانوحسگر زیستی بر پایه‌ نانوهیبرید گرافن اكسید – DNA
  290. پایان نامه ارشد: سنتز و شناسایی کمپلکس­های جدید دارویی از گالیم و قلع و تیتانیم و مطالعات کلینیکی تعدادی از آن­ها در درمان برخی رده ­های سلول­های سرطانی
  291. پایان نامه ارشد: ساخت غشا اولترا فیلتراسیون پلی اکریلونیتریل حاوی نانو ذرات TiO2 به منظور جداسازی پلی‌ اکریل‌ آمید کاتیونی
  292. پایان نامه ارشد: بررسی مواد تشکیل دهنده اسانس و عصاره چند گونه از گیاهان بومی شمال ایران
  293. دانلود پایان نامه ارشد :بررسی طیـف سنجی رزونانس مـغناطیسی هسته 31P و 27Al محلول های آلومینوفسفات و توصیف غربال های مولکولی سنتز شده پایه فسفاتی توسط تکنیک های FT-IR، XRD و SEM
  294. دانلود پایان نامه ارشد :تولید آنزیم پروتئاز در بیوراکتور سینی‌دار با بهره گرفتن از فرآیند تخمیر حالت جامد
  295. دانلود پایان نامه ارشد:بررسی و پایش کاهش گوگرد از بنزین های یورو 4
  296. دانلود پایان نامه ارشد:ارزیابی کمی ریسک ناشی ازحوادث فرآیندی در ایستگاه تقویت فشار گاز شهرستان رامسر
  297. پایان نامه ارشد:استخراج نقطه­ ی ابری اورانیم و اندازه­ گیری آن در نمونه ­های آبی به ویژه آب دریا
  298. پایان نامه ارشد:استفاده از مدل سطحی برای بهینه سازی فرآیند هیدرولیز اسید رقیق از پوست سبز گردو برای تولید گلوکز
  299. دانلود پایان نامه ارشد:امکان سنجی تبدیل میعانات گازی به سوخت های قابل مصرفی ( بنزین )
  300. دانلود پایان نامه ارشد:بررسی پیرولیز حرارتی و کاتالیستی پلی الفین ها و رابرها
  301. دانلود پایان نامه:بررسی تکنولوژی های موجود برای سولفورزدایی از نفتای برج تقطیر و شبیه سازی فرآیند آن
  302. پایان نامه ارشد:بررسی خواص اساسی بایو کامپوزیت ژلاتین / اسانس زیره سبز و اثرات آن بر پارامتر های معادلات رشد میکروبی استافیلو کوکوس اورئوس
  303. دانلود پایان نامه:بررسی خواص اساسی بایو نانو کامپوزیت نشاسته تاپیوکا / نانو دی اکسید تیتانیوم و اثر آن بر پارامتر­های رشد میکروبی اشریشیا کلی
  304. دانلود پایان نامه:بهینه سازی برج تقطیر با بهره گرفتن از مفهوم انتگراسیون حرارتی داخلی و تحلیل اکسرژی
  305. دانلود پایان نامه:تهیه نانولوله کربنی چند دیواره پوشش داده‌شده با پلی آنیلین به‌عنوان جاذب جهت حذف سریع رنگزای آبی مستقیم از پساب‌های صنعتی
  306. دانلود پایان نامه:تهیه و بررسی خواص نانو کامپوزیت­های پلی متیل متاکریلات / خاک رس دوبار اصلاح شده به روش پلیمریزاسیون سوسپانسیونی درجا
  307. پایان نامه ارشد:حل تشابهی جریان سكون متقارن محوریِ نانوسیال تراكم ناپذیر بر روی استوانه ساكن با در نظر گرفتن مكش سطحی یكنواخت در سطح
  308. دانلود پایان نامه ارشد:ساخت و ارزیابی غشای نانو کامپوزیتی پلی سولفون – نانو ذرات معدنی
  309. دانلود پایان نامه:سنتز کامپوزیت و نانوکامپوزیت پلی تیوفن / پلی استایرن با بهره گرفتن از پایدارکننده پلی وینیل پیرولیدون (PVP) در محیط آبی و بررسی ساختار شیمیایی و شکل شناختی محصول جهت جداسازی یون Zn2+
  310. دانلود پایان نامه:شبیه سازی فرآیند گوگردزدایی از میعانات گازی و بررسی پارامترهای موثر در راندمان واحد
  311. پایان نامه ارشد:شبیه‌سازی دینامیکی واحد احیا کاستیک و بهینه‌سازی پارامترهای عملیاتی پالایشگاه سوم مجتمع گاز پارس جنوبی
  312. دانلود پایان نامه:مدل سازی توزیع حباب ها در سیستم بستر شناور گاز- مایع به روش دینامیک سیالات محاسباتی (CFD)
  313. دانلود پایان نامه ارشد:مدل سازی جذب سطحی آمونیاك بر روی كربن فعال با بهره گرفتن از سیستم استنتاجفازی – عصبی
  314. پایان نامه ارشد:مدل سازی ایزوترم جذب رطوبت تعادلی و بررسی خواص اساسی فیلمهای ترکیبی SSPS و ژلاتین ساپورت شده با نانو دی اکسید تیتانیوم
  315. دانلود پایان نامه ارشد:مدلسازی و بررسی شرایط فیزیکی تشکیل هیدرات در لوله‌های انتقال گاز
  316. دانلود پایان نامه ارشد :مدلسازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب
  317. دانلود پایان نامه ارشد : مدلسازی و شبیه‌سازی فرآیند نمک‌زدایی الکترواستاتیک نفت خام
  318. دانلود پایان نامه ارشد : مطالعه آزمایشگاهی حذف کادمیوم از آب آشامیدنی
  319. پایان نامه ارشد: ابداع دستگاه جدید اسانس گیری از گیاه با بخار سرد ایجاد شده از طریق کاویتاسیون
  320. پایان نامه ارشد: استفاده از باکتری های امولسیون کننده نفت سنگین در جلوگیری از رسوب گذاری در مسیر خط لوله
  321. پایان نامه ارشد: استفاده از ساقه‌ گیاه خاکشیر در حذف آلایندگی رنگی از محیط‌های آبی و بررسی تأثیر عملکرد جاذب در مقیاس نانو بر حذف
  322. پایان نامه ارشد: اصلاح خواص فیزیکی و شیمیایی عایق‌های رطوبتی با بهره گرفتن از گوگرد و خاک تصفیه روغن
  323. پایان نامه ارشد: اندازه گیری اسپکتروفوتومتریک مقادیر بسیار ناچیز پالادیوم در نمونه های مائی توسط تکنیک یک مرحله ای میکرواستخراج مایع و مایع پخشی در سرنگ
  324. پایان نامه ارشد: اندازه گیری و مقایسه مقادیر سرب و کادمیوم در زیتونهای سبز مناطق علی آباد رودبار با بهره گرفتن از دستگاه جذب اتمی
  325. پایان نامه ارشد: بررسی ساختار الکترونی و خواص لیگاند شیف باز N4S2 و كمپلكس‌های آن با بعضی عناصر واسطه با بهره گرفتن از نظریه عامل دانسیته
  326. پایان نامه ارشد: بررسی طیـف­ سنجی رزونانس مـغناطیسی هسته 31P و 27Al محلول­ های آلومینوفسفات
  327. پایان نامه ارشد: بررسی نظری اثر حضور ناخالصی های لانتانیدی بر روی ساختار الکترونی نانولوله های کربنی
  328. پایان نامه ارشد: بررسی و انتخاب سیستم مناسب تصفیه آب تولید شده همراه نفت جهت استفاده در سکوهای نفتی
  329. پایان نامه ارشد: بکار­گیری الکترود­های اصلاح شده با مایعات یونی و نانو­تیوب­ های کربنی برای اندازه ­گیری الکتروتجزیه­ ترکیبات اعتیاد­آور
  330. پایان نامه ارشد: به کارگیری N-گرافن دوپه شده با نانوذرات پلاتین و نانو کامپوزیت Pt-Fe در سنجش­ های الکتروشیمیایی و تبدیلات انرژی
  331. پایان نامه ارشد: پلی آمید و اترهای آروماتیک جدید فلوئوردار سنتز و مطالعه بر روی گرانروی محلول و حل پذیری و گرماتابی و بلورینگی
  332. پایان نامه ارشد: تاثیر عصاره گیاه موسیر بر برخی فاکتورهای بیوشیمیایی و بافت پانکراس و کبد و کلیه رت های صحرایی نر دیابتیک ناشی از تزریق استرپتوزوتوسین
  333. پایان نامه ارشد: تهیه الکترودهای کربن سرامیکی و کربن شیشه ای اصلاح­ شده با نانولوله کربن و مولکول های کروسین
  334. پایان نامه ارشد: تهیه و بررسی فعالیت کاتالیزگری نانوکامپوزیت­ های تیتانیوم دی اکسید دوپه شده با تعدادی از عناصر لانتانیدی
  335. پایان نامه ارشد: تولید بیوپلیمر پلی هیدروکسی آلکانوآت ها و بررسی امکان استفاده آنها در نانوکامپوزیت های پلیمری
  336. پایان نامه ارشد: حذف فلزات سنگین از فاضلاب‌های صنعتی با بهره گرفتن از نانو ذرات مگهمایت اصلاح شده با پلیمرهای سنتزی جدید
  337. پایان نامه ارشد: ساخت و ارزیابی كاتالیزور وانادیل پیرو فسفات حاوی كبالت و كاربرد آن در اكسیداسیون انتخابی الكل ها
  338. پایان نامه ارشد: سنتز سه جزیی اسپیرو 1,3 اکسازین­ها با بهره گرفتن از ایمین­ های مزدوج و استر استیلنی و ترکیبات کربونیل­دار فعال
  339. پایان نامه ارشد: سنتز گزینش­ پذیر برخی از مشتق ­های دی­ هیدرو­پیرانو کرومن از طریق واکنش­های سه ­جزئی با بهره گرفتن از نانوذرات منیزیم اکسید
  340. پایان نامه ارشد: سنتز نانو ساختارهای آلومینیوم فسفات و کلسیم فسفات به روش سولوترمال
  341. پایان نامه ارشد: سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آن ها
  342. پایان نامه ارشد: سنتز و بررسی اثر فرآیند بر روی خواص فیزیکی و مکانیکی نانوکامپوزیت ­های ترموپلاستیک پلی­یورتان خاک رس اصلاح شده
  343. پایان نامه ارشد: سنتز و شناسایی پلی اتر و آمید های فلوئوردار جدید مشتق از 2،′2- بیس 1،′1- بای­نفتیل و انواع دی­اسیدها
  344. پایان نامه ارشد: سنتز و شناسایی لیگاند­های باز شیف مشتق شده از مشتقات سالیسیل­ آلدهید و 3-آمینو استوفنونو کمپلکس­های Cu(II) آن­ها
  345. پایان نامه ارشد: شبیه سازی دینامیک ملکولی استخلافات پورفیرین و مطالعه کمی ساختار و ویژگی در آن ها
  346. پایان نامه ارشد: کاربرد ضایعات چای بعنوان یک جاذب ارزان قیمت جهت استخراج منگنز از نمونه­ های غذایی
  347. دانلود پایان نامه ارشد: مدلسازی خواص بحرانی مواد آلی
  348. پایان نامه ارشد: مدلسازی ریاضی سینتیک هسته گذاری و رشد نانو ذرات پلیمری در فرایند پلیمریزاسیون امولسیونی با بهره گرفتن از نتایج هدایت سنجی
  349. پایان نامه ارشد: مدلسازی طول موج ماکزیمم جذب رنگ های آزو توسط الگوریتم مورچه و فعالیت داروئی مشتقات کاپساسین
  350. پایان نامه ارشد: مدل‌سازی و شبیه‌ سازی حذف فنل از پساب توسط بیوراکتور از نوع تماس دهنده غشایی
  351. پایان نامه ارشد: مطالعات Ab-initio و DFT بر روی پایداری ترمودینامیكی نانولوله‌های بورون نیترید و بررسی NMR آن در حلال‌های مختلف
  352. دانلود پایان نامه ارشد: مطالعه واکنش های چند جزئی در محیط آب میوه های طبیعی
  353. دانلود پایان نامه کارشناسی ارشد درباره حذف گوگرد
  354. پایان نامه -تحقیق تجربی پارامتر های موثر بر روی پیل سوختی میکروبی تک محفظه ای با ساختار حلقوی با بهره گرفتن از پساب صنایع شکلات سازی
  355. پایان نامه تولید آنزیمی استر 1- بوتیل اولئات با بهره گرفتن از سیستم سلولی قارچ رایزوپوس اوریزا

پایان نامه ژئوفیزیک:بهبود مدل­سازی معکوس داده­های الکترومغناطیس هوابرد حوزه فرکانس با تعیین مدل­اولیه مناسب و اعمال قید­های عمقی و هموارساز

دانلود متن کامل پایان نامه

Continue reading “پایان نامه ژئوفیزیک:بهبود مدل­سازی معکوس داده­های الکترومغناطیس هوابرد حوزه فرکانس با تعیین مدل­اولیه مناسب و اعمال قید­های عمقی و هموارساز”

دانلود پایان نامه:شناسایی ماتریس های مشخصه سیستم با بهره گرفتن از حل معکوس معادلات حرکت در حوزه فرکانس در سازه ها با نامنظمی در توزیع جرم، سختی و میرایی در ارتفاع

متن کامل پایان نامه مقطع کارشناسی ارشد رشته :مهندسی عمران

گرایش :مهندسی زلزله

عنوان : شناسایی ماتریس های مشخصه سیستم با بهره گرفتن از حل معکوس معادلات حرکت در حوزه فرکانس در سازه ها با   نامنظمی در توزیع جرم، سختی و میرایی در ارتفاع

Continue reading “دانلود پایان نامه:شناسایی ماتریس های مشخصه سیستم با بهره گرفتن از حل معکوس معادلات حرکت در حوزه فرکانس در سازه ها با نامنظمی در توزیع جرم، سختی و میرایی در ارتفاع”

پایان نامه ارشد: امکان تشخیص غیر مخرب شکل هندسی حفره ها با حل معکوس معادله الاستو استاتیک به روش المان های مرزی،الگوریتم ژنتیک و گرادیان مزدوج

متن کامل پایان نامه مقطع کارشناسی ارشد رشته :مهندسی مکانیک

گرایش :طراحی کاربردی

عنوان : امکان تشخیص غیر مخرب شکل هندسی حفره ها با حل معکوس معادله الاستو استاتیک به روش المان های مرزی،الگوریتم ژنتیک و گرادیان مزدوج

Continue reading “پایان نامه ارشد: امکان تشخیص غیر مخرب شکل هندسی حفره ها با حل معکوس معادله الاستو استاتیک به روش المان های مرزی،الگوریتم ژنتیک و گرادیان مزدوج”

پایان نامه: محاسبه کاهش سختی خمشی تکیه گاه ها در تیرها به روش معکوس با داده های ارتعاش آزاد در حضور یک سیستم یک درجه آزادی آزمون

متن کامل پایان نامه مقطع کارشناسی ارشد رشته :مهندسی عمران

گرایش :سازه

عنوان : محاسبه کاهش سختی خمشی تکیه گاه ها در تیرها به روش معکوس با داده های ارتعاش آزاد در حضور یک سیستم یک درجه آزادی آزمون

Continue reading “پایان نامه: محاسبه کاهش سختی خمشی تکیه گاه ها در تیرها به روش معکوس با داده های ارتعاش آزاد در حضور یک سیستم یک درجه آزادی آزمون”

دانلود پایان نامه ارشد : مطالعه خنک کاری مغز به منظور کاهش آسیب های وارده با بهره گرفتن از روش انتفال حرارت معکوس

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مکانیک

گرایش : سیالات

عنوان : مطالعه خنک کاری مغز به منظور کاهش آسیب های وارده با بهره گرفتن از روش انتفال حرارت معکوس

Continue reading “دانلود پایان نامه ارشد : مطالعه خنک کاری مغز به منظور کاهش آسیب های وارده با بهره گرفتن از روش انتفال حرارت معکوس”

دانلود پایان نامه : مدل­سازی فرآیند تولید ترکیبات آلی با بهره گرفتن از سیستم پیل سوختی میکروبی معکوس

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی شیمی

گرایش : بیوتکنولوژی

عنوان : مدل­سازی فرآیند تولید ترکیبات آلی با بهره گرفتن از سیستم پیل سوختی میکروبی معکوس

Continue reading “دانلود پایان نامه : مدل­سازی فرآیند تولید ترکیبات آلی با بهره گرفتن از سیستم پیل سوختی میکروبی معکوس”

دانلود پایان نامه:ارائه مدل ریاضی برای مسئله زنجیره تامین معکوس با در نظر گرفتن نیازمندی های مشتری

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته صنایع

گرایش :صنایع

عنوان : ارائه مدل ریاضی برای مسئله زنجیره تامین معکوس با در نظر گرفتن نیازمندی های مشتری

Continue reading “دانلود پایان نامه:ارائه مدل ریاضی برای مسئله زنجیره تامین معکوس با در نظر گرفتن نیازمندی های مشتری”

دانلود پایان نامه ارشد : پیش بینی عملکرد غشاهای اسمز معکوس با بهره گرفتن ازبهینه سازی، مدل سازی ریاضی و حل مدل به کمک روش های عددی

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی شیمی 

گرایش : محیط زیست

عنوان :  پیش بینی عملکرد غشاهای اسمز معکوس با بهره گرفتن ازبهینه سازی، مدل سازی ریاضی  و حل مدل  به کمک روش های عددی

Continue reading “دانلود پایان نامه ارشد : پیش بینی عملکرد غشاهای اسمز معکوس با بهره گرفتن ازبهینه سازی، مدل سازی ریاضی و حل مدل به کمک روش های عددی”

پایان­ نامه کشاورزی گرایش آبیاری و زهکشی:تأثیر زبری سطح با شیب معکوس بر روی مشخصات هیدرولیكی پرش

دانلود پایان­ نامه جهت اخذ درجه کارشناسی ارشد در رشته مهندسی کشاورزی گرایش آبیاری و زهکشی

باعنوان:تأثیر زبری سطح با شیب معکوس بر روی مشخصات هیدرولیكی پرش

Continue reading “پایان­ نامه کشاورزی گرایش آبیاری و زهکشی:تأثیر زبری سطح با شیب معکوس بر روی مشخصات هیدرولیكی پرش”

پایان نامه ارشد رشته مهندسی صنایع : بررسی رابطه استراتژی‌های رقابتی و بسته‌بندی کالاها

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی صنایع 

عنوان :   بررسی رابطه استراتژی‌های رقابتی و بسته‌بندی کالاها

Continue reading “پایان نامه ارشد رشته مهندسی صنایع : بررسی رابطه استراتژی‌های رقابتی و بسته‌بندی کالاها”

پایان نامه ارشد مهندسی صنایع- صنایع: توسعه مدل جدیدی برای پیش ­بینی قابلیت اعتماد محصولات بر اساس رویکرد بیز

دانلود متن کامل پایان نامه با فرمت ورد

پایان نامه مقطع کارشناسی ارشد رشته صنایع

Continue reading “پایان نامه ارشد مهندسی صنایع- صنایع: توسعه مدل جدیدی برای پیش ­بینی قابلیت اعتماد محصولات بر اساس رویکرد بیز”

پایان‌نامه کارشناسی ارشد رشته مهندسی مکانیک گرایش طراحی کاربردی: تحلیل كمانش، ارتعاشات و انتشار موج در نانو تیر پیچیده شده با بهره گرفتن از تئوری های گرادیان كرنشی و غیر محلی ارینگن

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی مکانیک

گرایش : طراحی کاربردی

عنوان : تحلیل كمانش، ارتعاشات و انتشار موج در نانو تیر پیچیده شده با بهره گرفتن از تئوری­های گرادیان كرنشی و غیر محلی ارینگن

دانشگاه کاشان

دانشکده مهندسی مکانیک

پایان‌نامه کارشناسی ارشد رشته مهندسی مکانیک

گرایش طراحی کاربردی

عنوان:

تحلیل كمانش، ارتعاشات و انتشار موج در نانو تیر پیچیده شده با بهره گرفتن از تئوری­های گرادیان كرنشی و غیر محلی ارینگن

استادراهنما:

دکتر مهدی محمدی مهر

Continue reading “پایان‌نامه کارشناسی ارشد رشته مهندسی مکانیک گرایش طراحی کاربردی: تحلیل كمانش، ارتعاشات و انتشار موج در نانو تیر پیچیده شده با بهره گرفتن از تئوری های گرادیان كرنشی و غیر محلی ارینگن”

پایان نامه ارشد کارشناسی ارشد رشته مهندسی برق گرایش قدرت:مقایسه روش های مختلف تشخیص جریان هجومی با بهره گرفتن از داده های عملی و ارائه یک روش جدید

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی برق گرایش قدرت

با عنوان :مقایسه روش های مختلف تشخیص جریان هجومی با بهره گرفتن از داده های عملی و ارائه یک روش جدید

Continue reading “پایان نامه ارشد کارشناسی ارشد رشته مهندسی برق گرایش قدرت:مقایسه روش های مختلف تشخیص جریان هجومی با بهره گرفتن از داده های عملی و ارائه یک روش جدید”

پایان نامه ارشد کارشناسی ارشد رشته مهندسی برق گرایش قدرت:مبدل های منبع امپدانسی و ارائه ساختار جدید مبدل منبع امپدانسی گاما نامتقارن

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی برق گرایش قدرت

با عنوان :مبدل های منبع امپدانسی و ارائه ساختار جدید مبدل منبع امپدانسی گاما نامتقارن

Continue reading “پایان نامه ارشد کارشناسی ارشد رشته مهندسی برق گرایش قدرت:مبدل های منبع امپدانسی و ارائه ساختار جدید مبدل منبع امپدانسی گاما نامتقارن”

پایان نامه ارشد کارشناسی ارشد رشته مهندسی برق گرایش قدرت:کنترل خودکار تولید سیستم قدرت در حضور منابع انرژی تجدیدپذیر

 

وزارت علوم، تحقیقات و فناوری

دانشگاه علوم و فنون مازندران

 

پایان نامه برای دریافت درجه کارشناسی ارشد

در رشته مهندسی برق – گرایش قدرت

 

عنوان:

کنترل خودکار تولید سیستم قدرت در حضور منابع انرژی تجدیدپذیر

 

نگارنده:

بهزاد مرادی

 

استاد راهنما:

دکتر عبدالرضا شیخ الاسلامی

 

استاد مشاور:

مهندس رویا احمدی آهنگر

 

 

1392

 

 

 

 

 


تقدیم به پدر و مادر عزیزم.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

تقدیر و تشکّر :

نگارنده بر خود فرض می‌داند تا بدینوسیله مراتب قدردانی و تشکر خود را از زحمات ارزشمند اساتید گرانقدر راهنما و مشاور جناب آقای دکتر عبدالرضا شیخ الاسلامی و سرکار خانم مهندس رویا احمدی آهنگر و نیز جناب آقای دکتر جواد روحی استاد محترم داور صمیمانه ابراز نماید.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

چکیده

در یک شبکه قدرت هر ناحیه موظّف به تأمین بار درخواستی ناحیه به همراه تضمین کیفیت توان تولیدی است. انحراف بیش از حدّ مجاز از فرکانس نامی شبکه، باعث آسیب رسیدن به تجهیزات، کاهش عملکرد بار‌های شبکه، تحمیل اضافه بار بر خطوط ارتباطی، تحریک ادوات حفاظتی شبکه و نقص عملکرد در تجهیزات الکترونیکی گشته و حتی در شرایطی سبب فروپاشی شبکه می‌گردد. هدف اصلی در کنترل بار فرکانس و در پی بروز هر تغییری در بار، بازگرداندن هرچه سریع تر فرکانس به مقدار نامی و کمینه نمودن دامنه نوسانات فرکانسی است. در کنار آن کاهش تغییرات توان انتقالی خطوط انتقال و بازگردانی سریع آن به محدوده قابل قبول دو هدف عمده کنترل خودکار تولید(AGC)  را تشکیل می‌دهند.

در حال حاضر شبکه قدرت مشمول تغییراتی کلی در بدنه و ساختار خود است. این تغییرات نه به سبب مسائل مربوط به تجدید ساختار یافتن شبکه و برنامه‌ریزی‌های رقابتی است، بلکه به علّت ظهور انواع جدید ادوات تولید توان، تکنولوژی‌های جدید و حجم رو به افزایش منابع انرژی تجدیدپذیر نیز می‌باشد. نیاز فزاینده به انرژی الکتریکی در کنار ذخیره محدود سوخت فسیلی و نگرانی روبه گسترش مشکلات زیست‌محیطی ناشی از مصرف سوخت فسیلی، ضرورت استفاده از منابع انرژی تجدیدپذیر نظیر باد و خورشید و ورود آنها را به شبکه قدرت دوچندان می کند. از طرفی با ظهور منابع انرژی تجدیدپذیر نظیر انرژی باد و خورشید علاقه شدیدی به بررسی تاثیرات استفاده از این منابع در بهره‌برداری و کنترل شبکه قدرت بوجود آمده است. یکپارچگی و پیوستن منابع انرژی تجدیدپذیر به شبکه قدرت فعلی گذشته از منافع اقتصادی که به دنبال دارد، اثرات پررنگی بر کیفیت توان و کنترل فرکانس شبکه باقی می‌گذارد.

افزایش استفاده از منابع انرژی تجدیدپذیر نیاز مبرم به بررسی و انجام مطالعات لازم جهت تعیین تاثیر آنها بر کنترل فرکانس سیستم قدرت را در پی داشته و اهمیّت داشتن برنامه‌های کنترلی مناسب را پر رنگ می کند. در این پایان نامه تأثیر شرکت دادن منابع انرژی تجدیدپذیر در کنترل فرکانس شبکه قدرت چند ناحیه ای با ارائه برنامه های کنترلی جدید مورد مطالعه قرار می‌گیرد.

كلمات كلیدی فارسی: کنترل خودکار تولید، تولید انرژی خورشیدی، تولید انرژی بادی، سیستم ذخیره‌ساز انرژی.

فهرست مطالب

فصل اول: اصول کنترل بار فرکانس سیستم قدرت 1

1-1- مقدمه 2

1-2- ضرورت پایداری فرکانس در شبکه قدرت 3

1-3- ساختار مطالعاتی پایان‌نامه 7

فصل دوم: کنترل خودکار تولید 9

2-1- تعریف مسئله 10

2-2- پیشینه تحقیق 17

2-2-1- وضعیت فعلی استفاده از منابع انرژی تجدیدپذیر 17

2-2-2- نقش تولید خورشیدی در کنترل فرکانس شبکه 19

2-2-3- حضور تولید بادی در کنترل فرکانس 21

2-2-4- استفاده از ذخیره‌سازها 22

2-3- جمع بندی 23

فصل سوم: کنترل فرکانس تولید بادی و خورشیدی 24

3-1- مقدمه 25

3-2- مشارکت تولید بادی ژنراتور القایی دو سو تغذیه در تنظیم فرکانس شبکه 25

3-2-1- کنترل فرکانس توربین بادی سرعت متغیّر 26

3-2-2- مدل توربین بادی 27

3-2-3- مقدارسنجی انرژی چرخشی قابل دسترسی از توربین-ژنراتور 30

3-2-4- کاربرد پشتیبانی موقّت  توان اکتیو DFIG در کنترل فرکانس سیستم قدرت 35

3-2-5- تغییر در تنظیم دروپ واحد‌های تولید بادی توسط DFIG بدون قابلیّت پشتیبانی فرکانس 36

3-2-6- تغییر در ثابت لختی سیستم بدون پشتیبانی فرکانس از طرف تولید بادی 36

3-2-7- تغییر در تنظیم فرکانس و ثابت لختی سیستم در حضور سیستم پشتیبانی فرکانس 36

3-2-8- کنترلر پیشنهادی برای پشتیبانی توان اکتیو از DFIG برای کنترل فرکانس 39

3-3- مشارکت واحد های تولید توان خورشیدی در کنترل فرکانس شبکه 40

3-3-1- مشخّصات پانل‌های خورشیدی و مدلسازی آنها 41

3-3-2- استراتژی کنترلی پیشنهادی برای مزرعه خورشیدی 44

3-3-3- تغییر در تنظیم دروپ واحد‌های تولیدی در حضور تولید خورشیدی با ضریب نفوذ 44

3-3-4- تغییر در ثابت لختی سیستم در حضور تولید خورشیدی 44

3-3-5- مشارکت واحد تولید خورشیدی در تنظیم فرکانس شبکه 45

3-3-6- الگوریتم سطح 2 کنترلی برای کنترل توان اکتیو 46

3-3-7- حالت کنترلی دروپ برای سیستم‌های خورشیدی 47

3-4- استفاده از ذخیره‌ساز‌های انرژی در سیستم قدرت 51

3-4-1- مدل ذخیره‌ساز باتری 51

3-5- الگوریتم بهینه‌سازی نوسان ذرات 53

3-6- شبکه ترکیبی 54

3-7- جمع بندی 55

فصل چهارم: شبیه سازی و ارائه نتایج 57

4-1- مقدمه 58

4-2- حضور DFIG در کنترل فرکانس سیستم قدرت 58

4-3- مشارکت سیستم‌های خورشیدی در کنترل فرکانس سیستم قدرت 67

4-4- مشارکت همزمان تولید بادی DFIG و سیستم‌های خورشیدی در کنترل فرکانس سیستم قدرت 71

4-5- استفاده از ذخیره‌ساز باتری در سیستم قدرت 75

4-6- بهینه‌سازی پاسخ دینامیکی شبکه 76

4-7- جمع بندی 81

فصل پنجم: نتیجه گیری و ارائه پیشنهادهای ممکن 82

5-1- بحث و نتیجه گیری 83

5-2- پیشنهادات 84

ضمائم 85

منابع و مراجع 86

 

 

لیست جداول

جدول 3- 1تغییر در تنظیم دروپ واحد های تولیدی و لختی سیستم برای ضریب نفوذ های متفاوت باد 38

جدول 4- 1سناریو‌های باتری در شبکه و مقدار شایستگی متناسب با ضریب نفوذ منابع و باتری 76

جدول 4- 2 مقادیر بهینه شده توسط الگوریتم PSO 78

جدول  1مشخصات نامی سیستم قدرت مورد مطالعه 85

جدول 2 پارامترهای به کار رفته در الگوریتم PSO 85

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

لیست تصاویر و نمودارها

شکل 2- 1 بلوک دیاگرام مدل توربین ژنراتور 11

شکل 2- 2 مدل ساده شده ی گاورنر 11

شکل 2- 3 مدل ساده شده ی توربین 11

شکل 2- 4 مدل توربین باز گرمکن 12

شکل 2- 5 مدل خطی و ساده شده کنترل فرکانس سیستم قدرت 12

شکل 2- 6 مدل کنترل بار فرکانس سیستم چند ماشینه 13

شکل 2- 7 شماتیک کلی سیستم دو ناحیه ای قدرت 13

شکل 2- 8 مدل خطی سیستم دو ناحیه ای قدرت با حلقه کنترلی تکمیلی 16

شکل 3- 1 بلوک دیاگرام مدل توربین بادی سرعت متغیّر 27

شکل 3- 2 منحنی‌های C_p برای زاویه‌های پره متفاوت 29

شکل 3- 3 توان و سرعت روتور توربین به عنوان تابعی از سرعت باد 29

شکل 3- 4 مدل توربین بادی سرعت متغیّر برای وزش باد با سرعت‌های کم و متوسط (کنترلر زاویه غیر فعّال شده است) 30

شکل 3- 5 توان مکانیکی تأمین شده از طرف DFIG برای سرعت‌های مختلف باد (B=0) 31

شکل 3- 6 مدت زمان تداوم افزایش توان پله ای موقت در خروجی توان الکتریکی توربین بادی برای سرعت‌های کم وزش باد 33

شکل 3- 7 مدت زمان تداوم افزایش توان پله ای موقت در خروجی توان الکتریکی توربین بادی برای سرعت‌های متوسّط وزش باد 34

شکل 3- 8 زاویه شیب پره برای برداشت سطوح مختلف توان اکتیو در سرعت‌های بالای وزش باد 35

شکل 3- 9 کنترلر پیشنهادی برای پشتیبانی فرکانس 40

شکل 3- 10 مدار معادل ماژول خورشیدی 41

شکل 3- 11 ژنراتور خورشیدی متصل به شبکه 42

شکل 3- 12 منحنی V_I ماژول خورشیدی 43

شکل 3- 13 منحنی V_P ماژول خورشیدی 43

شکل 3- 14 ساختار اصلی سیستم کنترلی 45

شکل 3- 15 دیاگرام کنترل دروپ فرکانس 49

شکل 3- 16 کنترل دروپ حالت ماندگار سیستم خورشیدی 50

شکل 3- 17 ساختمان کنترل دروپ پیشنهادی برای سیستم خورشیدی 51

شکل 3- 18 بلوک دیاگرام مدل خطی ذخیره‌ساز باتری 52

شکل 3- 19روند اجرایی تکنیک PSO 54

شکل 3- 20 بلوک دیاگرام سیستم دو ناحیه ای قدرت در حضور مزرعه بادی DFIG و مزرعه خورشیدی و ذخیره ساز باتری 54

شکل 4- 1تغییرات فرکانس ناحیه 1 در حضور سطوح مختلف تولید بادی در سیستم قدرت 59

شکل 4- 2 تغییرات فرکانس ناحیه 2 در حضور سطوح مختلف تولید بادی در سیستم قدرت 60

شکل 4- 3 تغییر توان ژنراتور ناحیه 1 60

شکل 4- 4 تغییر توان ژنراتور ناحیه 2 61

شکل 4- 5 تغییرات توان انتقالی خط ارتباطی بین ناحیه‌ای 61

شکل 4- 6 تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده 62

شکل 4- 7 تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده 63

شکل 4- 8 تغییرات توان انتقالی خطوط 63

شکل 4- 9 تغییرات توان خروجی ژنراتور سنکرون ناحیه 1 65

شکل 4- 10  تغییرات توان خروجی ژنراتور سنکرون ناحیه 2 65

شکل 4- 11 تغییرات فرکانس ناحیه 1 66

شکل 4- 12 تغییرات فرکانس ناحیه 2 66

شکل 4- 13 تغییرات توان انتقالی بین ناحیه 1 و 2 67

شکل 4- 14 تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده 69

شکل 4- 15تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده 69

شکل 4- 16تغییرات توان انتقالی خطوط برای موارد در نظر گرفته شده 70

شکل 4- 17تغییرات توان خروجی ژنراتور سنکرون ناحیه 1 70

شکل 4- 18تغییرات توان خروجی ژنراتور سنکرون ناحیه 2 71

شکل 4- 19تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده 72

شکل 4- 20 تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده 73

شکل 4- 21تغییرات توان انتقالی خط ارتباطی 73

شکل 4- 22تغییرات توان خروجی ژنراتور سنکرون ناحیه 1 74

شکل 4- 23تغییرات توان خروجی ژنراتور سنکرون ناحیه 2 74

شکل 4- 24 تغییرات توان خروجی منابع تجدیدپذیر با بهره گرفتن از برنامه‌های کنترلی پیشنهادی 75

شکل 4- 25 مقایسه انحراف فرکانس ناحیه 1 در حضور مقادیر بهینه باتری و ثات انتگرال گیر ناحیه 78

شکل 4- 26  مقایسه انحراف فرکانس ناحیه 2 در حضور مقادیر بهینه باتری و ثابت انتگرال گیر ناحیه 79

شکل 4- 27  مقایسه تغییرات توان انتقالی خط واسط در حضور مقادیر بهینه در دو ناحیه 79

شکل 4- 28 تغییرات توان خروجی ژنراتور سنکرون ناحیه 1 80

شکل 4- 29 تغییرات توان خروجی ژنراتور سنکرون ناحیه 2 80

 

فهرست علائم و اختصارات

 

 
ضریب بایاس فرکانس کنترل تکمیلی ناحیه
ثابت تنظیم دروپ گاورنر ناحیه
لختی ناحیه
عامل میراکنندگی بار ناحیه
ثابت زمانی توربین ناحیه
ثابت زمانی توربین بازگرمکن ناحیه
ثابت زمانی گاورنر ناحیه
بهره مدل توربین بازگرمکن
بهره انتگرال‌گیر کنتذل تکمیلی ناحیه
ضریب توان سنکرون‌کننده خط ارتباطی میان دو ناحیه  و
نسبت توان نامی دو ناحیه  و
تغییر بار در ناحیه
تغییرات توان انتقالی خط ارتباطی میان دو ناحیه  و
تغییرات فرکانس ناحیه


 

 

فصل اول: اصول کنترل بار فرکانس سیستم قدرت

 

 

 

 

 

 

 

 

 

 

 

1-1- مقدمه

عملکرد مطلوب یک سیستم قدرت منوط به برابر بودن میزان توان تولید با توان مصرفی و تلفات می‌باشد. در شبکه قدرت نقطه کار سیستم دائماً تغییر می‌‎کند. بنابر این جهت برقراری توازن میان تولید و مصرف باید سطح تولید واحدهای تولیدی تغییر یابد. در نتیجه فرکانس نامی شبکه و توان اختصاص یافته به واحد‌ها دچار تغییراتی می‌گردد. این انحرافات می‌تواند سبب ایجاد تاثیراتی ناخواسته در شبکه گردد. کنترل بار فرکانس به همراه کنترل خودکار تولید به عنوان یکی از مهّم ترین سرویس‌های جانبی در طراحی و بهره برداری سیستم‌های قدرت به منظور کارایی بهتر، افزایش کیفیت توان و قابلیّت اطمینان شبکه، نقش اصلی در کنترل این نوسانات بر عهده دارد. اهداف اصلی کنترل خودکار تولید را می‌توان در موارد زیر خلاصه کرد:

  • تعقیب مناسب الگوی بار
  • به صفر رساندن خطای حالت ماندگار فرکانس
  • کمینه کردن انحرافات توان خطوط انتقالی توان بین ناحیه ای
  • کمینه کردن حداکثر فرا جهش و زمان نشست برای انحرافات فرکانس ناحیات و توان انتقالی خطوط.

در حال حاضر شبکه قدرت مشمول تغییراتی کلی در بدنه و ساختار خود است. بخشی از این تغییرات به سبب مسائل مربوط به تجدید ساختار یافتن شبکه و برنامه‌ریزی‌های رقابتی است. تغییری که عملاً سیستم قدرت را از حالتی که در آن تنها یک مالک برای سیستم توزیع، انتقال و تولید وجود دارد، به سمتی سوق می‌دهد که شرکت‌های تولیدی انرژی در رقابت با یکدیگر توان درخواستی مصرف کنندگان را تأمین می کنند. این تراکنش‌های توان مرزبندی جغرافیایی خاصّی نمی‌پذیرد و لزوماً تولید و مصرف در یک ناحیه واقع نمی شوند. علاوه بر آن ورود مصرف کنندگان بزرگ نظیر کارخانه‌های فولاد با نرخ تغییرات توان قابل توجّه به بازار مصرف، می‌توانند سبب بروز اغتشاشات شدید فرکانسی گردند. بخش دیگری از تغییرات را می‌توان به ظهور انواع جدید ادوات تولید توان، تکنولوژی‌های جدید و حجم رو به افزایش بهره برداری از منابع انرژی تجدیدپذیر نیز نسبت داد. نیاز فزاینده به انرژی الکتریکی در کنار ذخیره محدود سوخت فسیلی و نگرانی روبه گسترش مشکلات زیست محیطی ناشی از مصرف سوخت فسیلی، ضرورت استفاده از منابع انرژی تجدیدپذیر نظیر باد و خورشید و ورود آنها را به شبکه قدرت دوچندان می کند. در نتیجه با توجّه به رشد روز افزون تقاضا در سیستم‌های قدرت، در محیط رقابتی و ورود منابع انرژی تجدیدپذیر به سیستم قدرت، هر یک از عملیات های کنترلی خودکار نظیر کنترل خودکار تولید، نقش بسیار مهّمی در حفظ امنیت و پایداری سیستم قدرت پیدا می‌‎کند.

1-2- ضرورت پایداری فرکانس در شبکه قدرت

فرکانس در شبکه‌های قدرت نشان دهنده وجود توازن بین توان تولیدی و مصرفی است. اگر این توازن برقرار باشد، فرکانس سیستم  ثابت خواهند ماند. با کاهش توان مصرفی فرکانس شبکه افزایش می‌یابد و با افزایش تقاضای بار فرکانس افت می‌‎کند. تغییرات فرکانس سبب تغییر در بار‌های حسّاس به فرکانس در شبکه نیز خواهد شد [1].

پایداری فرکانس در شبکه به دو دسته کوتاه مدت و بلند مدت تقسیم می‌شود. در پایداری کوتاه مدت، نگرانی عمده تغییرات ناگهانی فرکانس می‌باشد؛ ولی در پایداری بلند مدت کارایی دینامیکی شبکه و باز گرداندن فرکانس به مقدار نامی آن هدف اصلی به حساب می‌آید [2].

سیستم‌های قدرت معمولا در فرکانس نامی (50 یا 60 هرتز) مورد بهره برداری قرار می گیرند. تمام اجزای سیستم قدرت اعم از توربین ژنراتورها، ترانسفورماتورها، موتور‌ها، تجهیزات الکترونیکی و غیره برای کار در این فرکانس نامی طراحی و ساخته شده‌اند. انحراف فرکانس شبکه از مقدار نامی خود باعث دور شدن آنها از حالت نرمال کاری شان می‌گردد. گرچه که میزان حسّاسیت این ادوات به تغییرات فرکانس متفاوت است. افت فرکانس در شبکه تاثیرات مشخّصی بر عملکرد این ادوات باقی می‌گذارد. به برخی از پیامدها در زیر اشاره شده ‌است:

  1. ترانسفورماتورها بر اساس رابطه  ، به نحوی طراحی و ساخته شده‌اند که بدون اشباع هسته، از حدّاکثر چگالی شار آن استفاده شود. در واقع هسته در نقطه زانویی و نزدیک به اشباع کار می‌‎کند. در پی بروز کاهشی در فرکانس و با توجّه به رابطه فوق، لازم است جهت حفظ سطح ولتاژ القایی، شار مغناطیسی از مقدار نامی بیشتر گردد. در پی بروز چنین وضعیتی، احتمال به اشباع رفتن هسته ترانسفورماتور قریب الوقوع می کند. اشباع هسته جریان‌های مغناظیس کنندگی بزرگ و غیر سینوسی را نیز به دنبال دارد.
  2. سرعت چرخش ماشین‌های القایی و سنکرون با فرکانس شبکه متناسب است و بالطبع بروز هر انحرافی در فرکانس، تغییر سرعت ماشین‌ها را در پی دارد. این تغییر می‌تواند عملکرد نامطلوب در بار متصّل به شفت ماشین را در پی داشته باشد. علاوه بر آن پدیده اشباع هسته نیز همانند ترانسفورماتورها، محتمل است.
  3. ساعت‌های الکترونیکی و ثوابت، با فرکانس شبکه نسبت مستقیم دارند و هر گونه تغییری در فرکانس مستقیماً بر عملکرد صحیح آنها تاثیر می‌گذارد. در نتیجه تغییر فرکانس، موجب ضعف عملکرد این ادوات خواهد شد.
  4. توربین‌های شبکه قدرت و بالاخص توربین‌های بخار را میتوان حسّاس‌ترین اجزاء شبکه نسبت به تغییرات فرکانس دانست. هر توربین بخار دارای روتوری کشیده است که معمولا از چندین بخش تشکیل شده است. هر بخش شامل مجموعه ای از پره‌های ثابت و متحرک است. تنش‌های مکانیکی وارده به روتور در قسمت‌های مختلف یکسان نیست. این ساختار پیچیده دارای مجموعه وسیعی از فرکانس‌های تشدید مکانیکی است. تغییر در فرکانس می‌تواند موجب بروز پدیده تشدید زیرسنکرون در توربین گردد. طراحی توربین باید به صورتی انجام پذیرد که در پی بروز انحراف فرکانس در سیستم قدرت، فرکانس حاصله به اندازه کافی با فرکانس‌های تشدید فاصله داشته باشد. هرگونه افت فرکانس سبب کاهش سرعت توربین شده و مرز مضارب سرعت با فرکانس‌های تشدید را کم می‌‎کند. بر اثر نزدیک شدن سرعت توربین به یکی از این فرکانس‌های تشدید، دامنه ارتعاشات توربین افزایش می‌یابد و خطر بروز تشدید زیر سنکرون را افزایش می‌دهد [1].

از آن جا که تغییر فرکانس شبکه نتیجه وجود عدم تعادل بین توان تولیدی و مصرفی (به اضافه ی تلفات) است، هر گونه اقدام اصلاحی تغییر سطح تولید و یا مصرف را در پی دارد. برای حفظ فرکانس شبکه راهکارهایی وجود دارند که در زیر به بعضی از آنها اشاره می‌شود:

  1. واحدهای آبی و یا گازی واکنش سریع که قادرند طی زمان محدودی (در چند دقیقه) وارد مدار شده و کمبود شبکه را جبران سازند.
  2. استفاده از ظرفیت آزاد نیروگاه‌ها (رزرو گردان) که مستلزم عملکرد صحیح سیستم کنترل سرعت توربین، موسوم به گاورنر است. ثابت زمانی پاسخ گاورنر در نیروگاه‌های مختلف متفاوت است. به عنوان مثال واحد‌های بخاری که در آن تغییر سریع فشار دیگ بخار مجاز نیست، نیازمند چند ده دقیقه زمان جهت تنظیم بارند. با عملکرد گاورنر نیروگاه‌های شبکه، اضافه بار متناسب با تنظیم دروپ سیستم گاورنر سرعت، بین واحد‌های تولیدی توزیع می‌شود.
  3. از آنجا که توان مصرفی شبکه به سطح ولتاژ آن وابسته است، می‌توان با کنترل ولتاژ شبکه ی توزیع تا حدی تقاضای بار را کنترل کرد. کاهش ولتاژ توزیع منجر به تغییر در بار خانگی می‌گردد. اعمال این تغییرات از طریق تغییر تپ چنجر ترانسفورماتور‌های شبکه میسّر است و نیازمند محدوده زمانی در حدود چند دقیقه است.
  4. یکی دیگر از راه‌های حفظ فرکانس سیستم، حذف بار است. حذف بار یکی از سریع‌ترین راه‌های جبران کمبود توان حقیقی در سیستم قدرت به حساب می‌آید. فاصله زمانی صدور فرمان حذف بار تا انجام آن بسیار محدود بوده و در واقع زمان عملکرد کلیدهای قدرت شبکه تعیین کننده سرعت عمل حذف بار است. زمان لازم برای عملکرد کلید قدرت معمولاً چند سیکل الکتریکی است. صدور فرمان می‌تواند به صورت دستی توسط بهره بردار شبکه و یا توسط مکانیزمی هوشمند و خودکار صادر می‌شود. حذف بار دستی جهت افت ماندگار فرکانس شبکه صورت می‌گیرد و میزان آن در حدود 5% است. حذف بار دستی در واقع زمانی عمل می‌‎کند که ذخیره گردان یا واحد‌های راه اندازی سریع، در کوتاه مدت قادر به جبران عامل افت فرکانس نباشند و وضعیت شبکه به حالت هشدار وارد شده باشد. در برابر حذف بار دستی از حذف بار خودکار برای حذف لااقل چند ده درصد بار شبکه در زمانی بسیار کوتاه استفاده می‌شود. زمان عملکرد حذف بار خودکار مجموع زمان تشخیص افت فرکانس و زمان قطع کلید قدرت است و حداکثر چند ده سیکل الکتریکی به طول می انجامد.

از میان روش‌های فوق، از رزرو گردان در حضور واحد کنترل فرکانس برای جبران نوسانات فرکانسی شبکه که دارای دامنه ای محدود هستند، استفاده می‌شود. در این حالت معمولاً تعادل توان با عملکرد گاورنر واحدهای تولیدی شبکه برقرار می‌شود. حذف بار دستی و کنترل ولتاژ شبکه پس از رسیدن سیستم به وضعیت پایدار مورد استفاده قرار می‌گیرند و به صورت عمده خطاهای ماندگار شبکه را اصلاح می‌کنند. حذف بار خودکار هر چند سریع‌ترین مکانیزم محسوب می‌شود اما آخرین راه حل برای پاسخ به عدم توازن توان حقیقی شبکه است. این راه حل تنها زمانی انتخاب می‌شود که عدم تعادل به قدری بزرگ باشد که گاورنر‌ها فرصت لازم برای پاسخ به آن را نداشته باشند. در این حالت فرکانس شبکه به سرعت افت می‌‎کند و از محدوده ی مجاز کار دائمی خارج می‌شود. با رسیدن وضعیت شبکه به آستانه ی خطر، این مکانیزم سریعاً بار اضافی سیستم را حذف می‌‎کند. مهّم‌ترین اشکال این روش آنست که هزینه ی حفظ انسجام سیستم و حفظ پایداری، قطع برق و انرژی الکتریکی و ضرر مالی منتج به آنست.

افزایش ضریب نفوذ انرژی تجدیدپذیر در سیستم قدرت شاید به معنی ارتقای عدم قطعیت‌ها، موانع جدید در بهره برداری و پیدایش سوال‌های جدید در باب چگونگی کنترل این منابع در کنار ساختار‌هایی مانند کنترل خودکار تولید به نظر آید. سوال مهّمی که در بدو امر نظر مخاطب را به خود معطوف می‌دارد این است که در صورت افزایش ضریب نفوذ منابع انرژی تجدیدپذیر در شبکه، ملزومات کنترل خودکار چگونه با شرایط جدید مطابقت داده می‌شوند؟

اثرات ورود این منابع با ضریب نفوذ بالا در شبکه را، باید در چهارچوب‌های زمانی مناسب دید. در چهارچوب‌های زمانی چند ثانیه تا چندین دقیقه، قابلیّت اطمینان کلی سیستم قدرت تماماً بوسیله ادوات کنترلی خودکار و سیستم‌های کنترلی نظیر کنترل خودکار تولید، سیستم گاورنر سرعت ژنراتور‌ها و سیستم‌های تحریک آنها، پایدارسازهای سیستم قدرت، تنظیم کننده‌های خودکار ولتاژ، رله‌ها و برنامه‌های ‌حفاظتی مخصوص و سیستم‌های تشخیص و عملیاتی خطا در شبکه کنترل می‌شوند. در چهار چوب زمانی چند دقیقه تا یک هفته، بهره‌برداران سیستم می بایست تولید توان را به نحوی مدیریت نمایند تا با برقراری سطحی منطقی و اقتصادی از قابلیّت اطمینان، تولید نیروگاهی را با توجّه الگوی بار مصرف کنندگان و همچنین قیود عملیاتی شبکه تطبیق دهند.

واحدهای تولیدی انرژی تجدیدپذیر باید ملزومات فنی لازم جهت کنترل ولتاژ و فرکانس را در خود داشته باشد و نیز در صورت بروز شرایط هشدار در شبکه از خود انعطاف لازم را نشان دهند. در کنار آن واحدهای تولیدی انرژی تجدیدپذیر می باید سرعت عمل لازم جهت ایزوله ساختن واحد تولیدی در صورت بروز وضعیتی بحرانی در شبکه را از در خود ملحوظ دارد. آنها باید به عنوان عضوی از شبکه الکتریکی به صورت موثری فرمان پذیر باشند و به خصوص بتوانند در زمان بروز اغتشاشی در شبکه زمانیکه امنیت شبکه برق در معرض خطر باشد از خود انعطاف لازم را نشان دهند. ضریب نفوذ بالای تولیدات تجدیدپذیر به خصوص در مکان‌هایی دور از مراکز بار و تولیدات متداول انرژی، خطر اضافه بار بر روی خطوط انتقال توان را افزایش می‌دهد و در نتیجه بازنگری در طراحی شبکه و احیاناً اضافه نمودن خطوط ارتباطی جدید جهت پیش گیری از بروز اضافه بار بروی ارتباطی را طلب می‌‎کند. علاوه برآن به روز کردن کد‌های شبکه در حضور ضریب بالای تولیدات تجدیدپذیر نیز ضروری به نظر می‌رسد.

1-3- ساختار مطالعاتی پایان‌نامه

برای غلبه بر موانع نامطلوب در استفاده از منابع انرژی تجدیدپذیر نظیر باد و خورشید با ضریب نفوذ بالا در شبکه چند ناحیه ای قدرت، داشتن برنامه کنترلی مناسب جهت کنترل فرکانس شبکه ضروری است. از اینرو موضوعی که این پایان‌نامه سعی در پوشش آن دارد، به کنترل فرکانسِ تولید بادی و تولید خورشیدی و مشارکت آنها در کنترل اولیّه فرکانس باز می‌گردد. به طور کلی می‌توان حوزه ی دید کار حاضر را در چند بند زیر خلاصه کرد:

  1. ارائه طرح کنترلی جدیدی برای شرکت دادن تولید خورشیدی در تنظیم فرکانس ناحیه در سیستم چند ناحیه ای قدرت.
  2. مشارکت دادن تولید خورشیدی در کنترل اولیّه فرکانس.
  3. پیشنهاد برنامه کنترلی مناسب جهت استخراج انرژی جنبشی ذخیره شده در جرم چرخان توربین، در پی بروز اغتشاش باری در شبکه و کمک گرفتن از این توان اضافی جهت کم کردن افت اولیّه فرکانس در پی بروز آن انحراف بار در سیستم چند ناحیه ای قدرت.
  4. مشارکت دادن تولید بادی DFIG در کنترل اولیّه فرکانس .
  5. بررسی پاسخ دینامیکی سیستم دو ناحیه قدرت متشکّل از واحد‌های حرارتی در حضور تولید خورشیدی/بادی/ هر دو، در سیستم قدرت.
  6. استفاده از ذخیره‌ساز‌های انرژی برای کاهش نوسانات توان خروجی در سمت تولید بادی و برای کمک به قابلیّت تنظیم فرکانس و جلوگیری از بروز تغییرات شدید توان در سمت تولید خورشیدی.
  7. بهینه‌سازی بهره انتگرال‌گیر‌های کنترل تکمیلی دو ناحیه، ضرایب نفوذ بهینه تولیدات تجدیدپذیر(جهت تأمین سطح بهینه ای از پشتیبانی فرکانس) و همچنین تعیین ظرفیت ذخیره‌ساز در دو ناحیه، برای داشتن کمترین نرخ تغییرات فرکانس دو ناحیه و توان انتقالی خط واسط دو ناحیه.

به این صورت می‌توان مطالبی را که در فصل‌های بعدی بیان می‌شود، سازماندهی کرد. در فصل دوم پیشینه تحقیق مفصلاً بررسی می‌گردد. در فصل سوم به مطالعه و بررسی چگونگی استحصال توان بادی بوسیله DFIG پرداخته می شود. ایده ی استفاده انرژی جنبشی موجود در جرم چرخان توربین بادی و تزریق آن به شبکه جهت کاهش افت اولیّه فرکانس در زمان وقوع افزایش باری در شبکه مورد توجّه قرار می‌گیرد. در ادامه ساختار اصلی واحد تولید خورشیدی معرفی می‌شود. پس از آن برنامه کنترلی مناسبی جهت شرکت دادن تولید خورشیدی در کنترل اولیّه فرکانس بیان می‌شود. فصل چهارم به ارائه نتایج شبیه سازی اختصاص دارد. سیستم دو ناحیه ای حرارتی به عنوان مدل پایه در نظر گرفته می‌شود و پاسخ دینامیکی آن به انحراف بار در هر ناحیه شبیه سازی می گردد. اثر ورود تولید DFIG به شبکه با ضریب نفوذ مشخّصی در حضور برنامه کنترلی جهت پشتیبانی موقّت توان اکتیو و بدون حضور آن، بررسی می‌شود. تاثیرات ورود تولید خورشیدی با ضریب نفوذ بالا در شبکه در حضور استراتژی کنترلی پیشنهادی و عدم حضور آن بررسی می‌شود. در مرحله آخر تاثیرات توأماً ورود تولیدات باد و خورشید، در حضور برنامه‌های کنترلی مربوطه شان و در نبود آنها با مدل اصلی مقایسه می‌شود. در گام بعد با احتساب اثر ورود ذخیره‌ساز پارامترهای مهّم شبکه بهینه‌ می گردند. در فصل پنجم، اقدامات صورت گرفته جهت مطالعه تأثیرات ورود تولیدات بادی DFIG و تولید خورشیدی به شبکه جمع بندی شده و در انتها گام‌ها و پیشنهادهای ممکن در ادامه ی مسیر حاضر بیان می شوند.

 

 

 

فصل دوم: کنترل خودکار تولید

 

 

 

 

 

 

 

 

 

2-1- تعریف مسئله

سیستم قدرت ذاتی غیر خطی و متغیّر با زمان دارد. برای بررسی و تحلیل پاسخ فرکانسی سیستم قدرت نسبت به اغتشاشات کوچک بار می‌توان از مدل خطی شده ی سیستم استفاده کرد. اگرچه که در مطالعات پایداری دینامیکی شبکه، مطالعات کنترل ولتاژ و فرکانس را نمی‌توان مستقل از هم در نظر گرفت، ولی با توجّه به این که دینامیک‌های موجود در پاسخ فرکانسی سیستم در قیاس با دینامیک‌های ولتاژ و زاویه روتور بسیار کندتر عمل می‌کند، می‌توان برای مطالعات پایداری دینامیکی، مطالعات کنترل فرکانس و کنترل ولتاژ و زاویه روتور را در حالت پایدار شبکه، به صورت مستقل از هم در نظر گرفت.

پاسخ ژنراتورهای سنکرون شبکه به تغییرات فرکانس را می‌توان به سه مرحله تقسیم بندی کرد [2]:

  • ابتدا به ساکن پس از تشخیص عدم توازن در سیستم، روتور‌های ژنراتورها انرژی آزاد و یا جذب می کنند و این مسأله باعث تغییر در فرکانس سیستم می‌گردد. به این مرحله کنترلی اصطلاحا پاسخ اینرسی گفته می‌شود.
  • زمانی که تغییرات فرکانس از مقدار معینی بیشتر شد، کنترل کننده‌ها برای تغییر توان ورودی به سیستم فعّال می‌شوند و این مرحله را اصطلاحاً کنترل اولیّه فرکانس می‌نامند. این مرحله کنترلی حدود 10 ثانیه پس از وقوع حادثه آغاز و تا 20 ثانیه پس از آن نیز استمرار می‌یابد.
  • پس از آن که کنترل کننده‌های موجود اغتشاش بوجود آمده را اصلاح کردند، سیستم مجدّداً متعادل می‌گردد؛ اگرچه که فرکانس سیستم از مقدار نامی خود فاصله دارد. در این مرحله واحدهای تولید شبکه وظیفه باز گرداندن فرکانس سیستم به مقدار نامی آنرا بر عهده می‌گیرند. این مرحله کنترلی را کنترل ثانویه فرکانس می نامند. این مرحله از 30 ثانیه پس از زمان بروز اغتشاش شروع شده و می‌تواند تا 30 دقیقه پس از آن نیز ادامه یابد.

در یک توربین ژنراتور، رفتار دینامیکی کلی بار-تولید و انحراف فرکانس به صورت زیر بیان می‌شود:

(2-1)

که در آن  انحراف فرکانس،  انحراف توان مکانیکی و  میزان تغییرات بار می‌باشد. ثابت اینرسی با  و ثابت میرایی با  نشان داده شده ‌است. با گرفتن تبدیل لاپلاس از معادله ی فوق، رابطه زیر حاصل می‌شود:

(2-2)

می‌توان معادله فوق را به صورت بلوک دیاگرام نشان داده شده در شکل (2-1) نمایش داد.

شکل 2- 1 بلوک دیاگرام مدل توربین ژنراتور

 همچنین برای مدلسازی گاورنر، می‌توان از مدل ساده شده ی شکل (2-2) استفاده کرد.

شکل 2- 2 مدل ساده شده ی گاورنر

دقت شود که در شکل (2-2)،  معرف دروپ گاورنر،  ثابت زمانی گاورنر و  رفرنس مرجع بار است. مدل ساده شده ی توربین نیز به صورت شکل (2-3) در نظر گرفته شده ‌است.

شکل 2- 3 مدل ساده شده ی توربین

علاوه بر این، مدل باز گرمکن توربین‌های بخاری را می‌توان با بلوک دیاگرام نشان داده شده در شکل (2-4) مدل کرد:

شکل 2- 4 مدل توربین باز گرمکن

بنابر این بلوک دیاگرام حلقه اولیّه کنترل بار فرکانس صورت شکل (2-5) در خواهد آمد.

شکل 2- 5 مدل خطی و ساده شده کنترل فرکانس سیستم قدرت

برای مدل کردن کنترل فرکانس یک سیستم ایزوله یا جزیره ای می‌توان کل مجموعه را به صورت شکل 2-5 در نظر گرفت. مدل ارائه شده می‌تواند به عنوان مدل پاسخ فرکانسی معادل برای کل سیستم در نظر گرفته شود. در مدل جدید  و  مجموع  و ‌ های آن ناحیه می‌باشد.

در یک سیستم جزیره ای، تنظیم خطای انتقال توان بین ناحیه ای جزو وظایف کنترل بار فرکانس نیست. تنها وظیفه کنترل بار فرکانس باز گرداندن فرکانس آن ناحیه به مقدار نامی است. برای این که بتوان مدل شکل (2-6) را به یک سیستم قدرت چند ناحیه ای تعمیم داد، بایستی مفهوم ناحیه کنترلی به گونه ای تعریف شود که در برگیرنده گروهی از ژنراتورهای همپا باشد. همپایی به این مفهوم است که همه ی ژنراتورها نسبت به تغییرات بار جهت یکسانی داشته باشند. ضمنا در هر ناحیه، کنترل بار فرکانس برای تمام آن ناحیه فرض شود.

یک سیستم قدرت چند ناحیه ای از نواحی کنترلی مجزایی تشکیل یافته است که به وسیله خطوط انتقال به یکدیگر متصل شده‌اند. انحراف فرکانس در هر ناحیه، نه تنها ناشی از تغییرات بار آن ناحیه است، بلکه تغییرات توان انتقالی خطوط بین ناحیه ای نیز در آن تاثیرگذار است.

شکل 2- 6 مدل کنترل بار فرکانس سیستم چند ماشینه

کنترل فرکانس در هر ناحیه نه فقط مسئول کنترل فرکانس همان ناحیه است، بلکه مسئولیت کنترل توان انتقالی خطوط ارتباطی با نواحی دیگر را نیز باید برعهده گیرد. بنابراین در یک سیستم چند ناحیه ای قدرت، بایستی تأثیر خطوط انتقال توان بین ناحیه ای را در مدلسازی کنترل بار فرکانس در نظر داشت. در شکل (2-7) یک سیستم دو ناحیه ای نشان داده شده ‌است.

شکل 2- 7 شماتیک کلی سیستم دو ناحیه ای قدرت

در این شکل رابطه بین توان انتقالی از خطوط ارتباطی بین دو ناحیه طبق رابطه (2-3) حاصل می‌شود:

(2-3)

که در آن  و  ولتاژ‌های نواحی کنترلی 1 و 2 بوده و  و  زاویه‌های بار ماشین‌های معادل نواحی 1 و 2 می‌باشد. منظور از  راکتانس خط بین ناحیه ای می‌باشد.

 با خطی سازی رابطه  (2-3)  حول نقطه کار   و  خواهیم داشت:

 

(2-4)

که در آن  گشتاور سنکرون کننده نام داشته و برابر است با:

(2-5)

با بهره گرفتن از تابع تبدیل  خواهیم داشت:

(1-6)

در یک سیستم چند ناحیه ای علاوه بر تنظیم اولیّه فرکانس ناحیه، کنترل مکمل بایستی انحراف توان عبوری از خطوط بین ناحیه ای را نیز به صفر برساند. با افزودن یک کنترلر انتگرال‌گیر به این حلقه کنترلی، این اطمینان حاصل می‌شود که اولاً انحراف موجود در فرکانس و دوماً توان انتقالی خطوط در حالت ماندگار به صفر می‌رسد. سیستم کنترلی که دو هدف عمده فوق پوشش می‌دهد را اصطلاحاً کنترل خودکار تولید می نامند. کنترل خودکار تولید با اضافه کردن یک سیگنال کنترلی جدید در حلقه کنترلی فیدبک صورت می پذیرد. همانگونه که در معادله (2-7) آید، سیگنال کنترلی مذکور که سیگنال خطای ناحیه نامیده می‌شود، ترکیبی خطی از تغییرات فرکانس ناحیه به انضمام تغییرات توان انتقالی خطوط انتقالی می‌باشد:

(2-7)

که در آن  ضریب بایاس ناحیه (رابطه 2-8)،  تغییرات فرکانس ناحیه و  تغییرات توان خطوط انتقالی است. بلوک دیاگرام نهایی شبکه قدرت که درآن کنترل اولیّه و ثانویه فرکانس لحاظ شده ‌است در شکل (2-8) آمده است.

معمولاً پیشنهاد می‌شود، ضریب  به صورت زیر انتخاب شود:

(2-8)

در رابطه فوق  مشخّصه دروپ و  ضریب حسّاسیت بار نسبت به تغییرات فرکانس می‌باشد. شکل 2-8 چگونگی اعمال کنترل تکمیلی یا ثانویه را نشان می‌دهد.

تاثیر تغییرات بار محلی و توان عبوری از خطوط بین ناحیه ای، در مدل شکل (2-8) به خوبی در نظر گرفته شده ‌است. هر ناحیه کنترلی، توان عبوری از خطوط بین ناحیه ای و فرکانس ناحیه ی خود را در مرکز کنترل ناحیه خود کنترل می‌‎کند. سیگنال  بعد از محاسبه، وارد کنترل کننده ی واحد دیسپتچ می‌شود. سیگنال کنترلی تولیدی به عنوان رفرنس بار به توربین گاورنر مورد نظر اعمال می‌شود. بنابر این دیاگرام کنترلی پیشنهادی می‌تواند اهداف اولیّه کنترل بار فرکانس را برآورده ساخته و مقدار توان عبوری از خطوط و همچنین فرکانس ناحیه را به مقدار مشخّص شده برگرداند. 

فرض کنید در یک ناحیه کنترلی شاهد تغییر بار به مقدار  باشیم. افزایش بار سیستم باعث کاهش فرکانس سیستم می‌شود. می‌توان مقدار اولیّه این انحراف را تابع عوامل زیر دانست:

  • انرژی جنبشی موجود در قسمت گردان ماشین‌ها (لختی)
  • تعداد ژنراتورهایی که دارای کنترل اولیّه می‌باشند و ظرفیت رزرو موجود در این واحد‌های تولیدی
  • مشخّصات دینامیکی ماشین‌ها و کنترلر‌ها.

انحراف ماندگار فرکانس در حالت دائمی، تابع دامنه اغتشاشات وارده و مشخّصه پاسخ فرکانسی شبکه می‌باشد. مشخّصه فرکانسی سیستم تابع مسائل زیر است:

  • مشخّصه دروپ تمام ژنراتورهای ناحیه که در تأمین بار مشارکت دارند.
  • حسّاسیت بار به تغییرات فرکانس سیستم در ناحیه مورد نظر.

به طور کلی عدم تعادل بین تولید و مصرف همواره در سیستم قدرت به صورت لحظه ای و دائم وجود دارد. کمتر بودن فرکانس از مقدار نامی نشان دهنده کسری تولید در شبکه است و بالعکس. در عمل حتی بدون وجود خطا در سیستم، بار به صورت پیوسته تغییر می‌‎کند. انحراف فرکانس از مقدار نامی کنترل اولیّه را فعّال می‌کند. کنترل اولیّه باعث ایجاد یک فرکانس جدید و متفاوت از فرکانس نامی (همراه با خطای حالت ماندگار) در ناحیه می‌شود. از آنجائیکه در یک سیستم قدرت، هر ناحیه کنترلی بر اساس توازن بار در ناحیه خود در کنترل بار فرکانس شرکت می‌‎کند، عدم تعادل بین بار و تولید در هر ناحیه باعث تبادل توان بین نواحی کنترلی شده و انحراف از مقدار برنامه ریزی شده را در پی دارد.

شکل 2- 8 مدل خطی سیستم دو ناحیه ای قدرت با حلقه کنترلی تکمیلی [2]

وظیفه کنترل ثانویه که همان کنترل خودکار تولید نامیده می شود، حفظ توازن توان در تمام ناحیه‌های کنترلی به صورتی است که مقدار فرکانس برابر مقدار نامی و همچنین میزان توان انتقالی خطوط برابر با میزان توان انتقالی برنامه ریزی شده آن باشد.

علاوه بر این دو حلقه کنترلی، کنترل ثالثیه ای نیز وجود دارد که عملکرد آن کند تر از کنترل‌های اولیّه و ثانویه است. ساختار کنترل ثالثیه به نحوه ی مدیریت شبکه و قوانین آن وابستگی دارد. به عنوان مثال، در ساختار سنتی، بهره بردار سیستم پس از انجام پخش بار اقتصادی، مقادیر جدید نقطه کار واحد‌های تولیدی را تعیین می کرد. در واقع، کنترل ثالثیه میزان توان تولیدی واحدها و نقاط بار گذاری آنها را به گونه ای تعیین می‌‎کند که با برقراری توازن میان توان تولیدی اکتیو و راکتیو واحدها با میزان مصرف آنها  (به علاوه تلفات شبکه) و ضمن رعایت قیود شبکه، هزینه بهره برداری نیز کمینه شود.

ورود منابع انرژی تجدیدپذیر در مقیاس بالا اثرات پر رنگی بر قابلیّت کنترل فرکانس سیستم قدرت و سیستم‌های کنترل خودکار همانند دیگر سیستم‌های کنترلی و بهره برداری خواهد داشت. این اثرات در سال‌های آتی که ضریب نفوذ تولیدات تجدیدپذیر روند صعودی به خود می‌گیرد نیز افزایش می‌یابد. از سوی دیگر، اکثر منابع انرژی تجدیدپذیر که مورد بهره برداری قرار گرفتند فاقد قابلیّت‌های تنظیم فرکانس می‌باشند. شاید این خصیصه کمک مشخّصی به قابلیّت تنظیم فرکانس شبکه به حساب نیاید، بلکه نیاز به داشتن توان کافی هنگام بروز اغتشاشی در شبکه و برقراری تعادل تولید-مصرف را دوچندان می‌‎کند. ساختار کنترل فرکانس در آینده، می‌بایست از انعطاف عمل و هوشمندی بیشتری برخوردار بوده تا بتواند این اطمینان خاطر را فراهم آورد که به صورت پیوسته توازن لازم میان تولید و مصرف را در شبکه در پی بروز تغییر در بار شبکه و همچنین نوسانات توان تولیدی منابع تجدیدپذیر برقرار نماید.

برای رسیدن به این مطلوب، بهره‌برداران شبکه می بایست اطلاعات و الگوهای دقیق تولید تجدیدپذیر و بار را در دست داشته باشند. امروزه توازن تولید-مصرف در یک سیستم قدرت بوسیله کنترل خروجی منابع تولید متداول (و نه تولید تجدیدپذیر) جهت دنبال کردن الگوی بار مد نظر قرار دارد. با ورود منابع انرژی تجدیدپذیر به نظر می‌رسد از سهم ظرفیت در دسترس کنترل خودکار تولید در برقراری تعادل تولید و مصرف (کنترل بار فرکانس) کاسته شود. در نتیجه می‌توان توقع داشت که در آینده ای نزدیک، کنترل خودکار تولید سهم مهّمی در برقراری مجدّد توازن تولید-مصرف در چهار چوب زمانی کوتاه مدت (چند ثانیه تا چندین دقیقه) و اداره کردن خطای پیشبینی بار و تولید متداول، بازی کند. از این رو، بسیار ضروری است بهره‌برداران و طراحان شبکه بروی استراتژی‌های کنترلی بازنگری‌های لازم را به عمل آورند و به صورت نسبی مرز‌های عملکرد، قابلیّت‌ها و تکنولوژی‌های لازم را برای ارتقای کیفیت توان تحویلی، به روز نمایند.

2-2- پیشینه تحقیق

2-2-1- وضعیت فعلی استفاده از منابع انرژی تجدیدپذیر

امروزه لزوم استفاده ازمنابع انرژی تجدیدپذیر در بسیاری از کشورهای دنیا به اثبات رسیده است. رشد استفاده از منابع انرژی تجدیدپذیر در پاسخ به پدیده گرمایش جهانی و نیاز به داشتن منبع سوخت امن و ارزان، دلیلی بر این مدعاست. منابع انرژی تجدیدپذیر در حال حاضر بیش از 14% نیاز به انرژی کل دنیا را فراهم می‌آورد  [3].

در حال حاضر، تکنولوژی استحصال انرژی بادی بیشترین سهم از بکارگیری منابع انرژی تجدیدپذیر در سیستم قدرت را به خود اختصاص داده است. پیش بینی می‌شود تا سال 2015 تولید جهانی آن به بیش از 300 گیگاوات رسد. اینگونه پیش بینی شده ‌است که ضریب نفوذ تولید بادی در کل دنیا، تا سال 2020 به  8% کل مقدار توان تولیدی برسد. اتحادیه اروپا نیز رهیافت به ضریب نفوذ 20% را در پایان سال 2020 میلادی در افق چشم انداز خود قرار داده است [4]. به گفته سازمان انرژی بادی اروپا، ظرفیت تولیدی توان بادی به مقدار 180 گیگاوات ارتقا یابد [5]. دپارتمان انرژی ایالات متحده نیز رسیدن به ضریب نفوذ 6% استحصال انرژی بادی در پایان سال 2020 اعلام داشته است [6].

در میان تمامی مصادیق تولید پراکنده، تولید خورشیدی نیز به سبب داشتن خصوصیات دوستدار محیط زیست (سبز)، کاهش افزایشی قیمت ماژول خورشیدی و همچنین مشوّق‌های مالی دولت‌ها به سرعت در حال پیشرفت می‌باشند [7] [8]. فعّالیت‌های متنوعی در جهت استفاده از انرژی خورشیدی، باتری‌ها و واحدهای ذخیره‌ساز انرژی انجام یافته است. گزارش‌های منتشره در سال 2011 حاکی از این مطلب است حجم عظیمی از سیستم‌های متصل به شبکه در کشور‌های توسعه یافته نظیر ایالات متحده، آلمان و ژاپن مورد بهره برداری قرار گرفته اند و همچنین برنامه‌های احداث چندین واحد دیگر در سرتاسر جهان در دستور کار قرار دارند [9] [10]. هدف گذاری ژاپن در پایان سال 2010 نصب ظرفیت 28 گیگاوات پانل‌های خورشیدی بوده است [11]. سامسونگ به تازگی اعلام داشته با امضای قراردادی قصد ساختن واحد خورشیدی 100 مگاواتی را دارد که اولین فاز از یک مجموعه 500 مگاواتی به حساب می‌آید [12]. رشد بازار برق منابع انرژی تجدیدپذیر در کشورهای آسیایی نیز چشمگیر بوده است. بر اساس نرخ رشد فعلی، اتحادیه صنعتی منابع انرژی تجدیدپذیر چین، ظرفیتی نزدیک به 50 گیگاوات را تا سال 2015 پیش بینی کرده‌است [13]. به نظر می‌رسد هند نیز نرخ رشد نصب منابع استحصال توان بادی خود را حفظ نموده است. در کره، منابع انرژی تجدیدپذیر نیز رو به رشد است. دولت جایگزینی 5 % تولید متداول با منابع انرژی تجدیدپذیر را تا سال 2011 در دستور کار قرار داده بود [4].

پس از چند سال کاهش نرخ رشد، بازار برق انرژی تجدیدپذیر اقیانوسیه نیز جانی تازه یافته است. در استرالیا، دولت رسیدن به سقف 20% استفاده از این منابع را تا پایان 2020 مبنا قرار داده است. همچنین اروپا، آمریکای شمالی، آسیا بالاترین نرخ افزایش به میزان ظرفیت منابع تجدیدپذیر را دارا هستند. خاور میانه، آفریقای شمالی و آمریکای لاتین نیز ظرفیت منابع تجدیدپذیر نصب شده خود را افزایش داده اند. ظرفیتهای جدیدی در ایران، مصر، مراکش، تونس و برزیل گزارش شده‌اند [13].

2-2-2- نقش تولید خورشیدی در کنترل فرکانس شبکه

از آنجا که هزینه ی نصب و راه اندازی اولیّه مزارع خورشیدی نسبتاً بالا بوده و منبع انرژی رایگان در اختیار دارند، مزارع خورشیدی جهت دریافت حداکثر بازگشت مالی عموماً به گونه ای مورد بهره برداری قرار می گیرند که بیشینه مقدار توان[1] استحصال گردد [14]. با افزایش ضریب نفوذ مزارع خورشیدی، علاوه بر ظرفیت تنظیم فرکانس (که عموماً توسط ژنراتورهای سنکرون تأمین می‌شود) لختی شبکه کاهش می‌یابد، که خود عاملی در جهت انحراف بیشتر فرکانس در قبال اغتشاش وارده به سیستم به شمار می‌رود [15]. از سوی دیگر با ادامه ی روند کاهش قیمت پنل‌های خورشیدی و بالطبع تسریع روند افزایش ضریب نفوذ سیستم‌های خورشیدی در شبکه قدرت، نیاز به داشتن سرویس‌های‌جانبی مهّم نظیر کنترل فرکانس و ولتاژ بیش از پیش رخ می نماید [16].

رویکردهای متنوعی در بهره‌برداری از تولید خورشیدی موجود است. سه رویکرد عمده را می‌توان اینگونه نام برد [17]:

  1. یک رویکرد متداول جهت کنترل فرکانس تولید خورشیدی به این صورت است که تولید خورشیدی به صورت MPPT تولید شود و به وسیله سیستم‌های ذخیره‌ساز انرژی (ESS) نوسان‌های توان تولیدی خروجی نیروگاه خورشیدی کاهش یابد [18] [19] [20] [21]
  2. نصب و راه اندازی بانک بار مجازی (بار اضافی) جهت جذب توان مازاد[20].
  3. بهره‌برداری از نیروگاه خورشیدی در حالت توزیع توان بوسیله استراتژی‌های حبس تولید تعمّدی (deliberate curtailment) .
  4. استفاده از ذخیره‌سازهای حجیم نظیر تلمبه ای-ذخیره ای، ذخیره‌سازهای باتری یا هوای فشرده، جهت ذخیره انرژی خورشیدی در طول روز و مصرف آن در شب.

چندین تحقیق جهت کمینه کردن اثرات نامطلوب اتصال ژنراتور خورشیدی به شبکه ایزوله، که به صورت MPPT مورد بهره برداری قرار گرفته، ارائه شده ‌است [22] [23] [24] [25] [26] [27]. درین مقالات متداول ترین روش اعمالی جهت کنترل فرکانس، استفاده از ذخیره‌سازهای انرژی برای نرم کردن توان خروجی، تنظیم فرکانس و در نظر گرفتن ظرفیتی رزرو برای ژنراتور خورشیدی بوده است. هیچکدام از روش‌های ذکر شده توان کنترل خروجی ژنراتور خورشیدی هنگام تغییرات بار را ندارند و هیچ گونه استراتژی کنترلی جهت شرکت دادن واحد تولید خورشیدی در تنظیم فرکانس سیستم ارائه نمی‌کنند. در [28] شبکه ای ترکیبی از تولید خورشیدی و باد در نظر گرفته شده ‌است. در این مقاله روشی برای کنترل هر چه بهتر باتری جهت نرم کردن اغتشاشات توان خروجی تولید بادی و خورشیدی پیشنهاد شده ‌است. در مرجع [21] با بهره گرفتن از منطق فازی و در نظر گرفتن تغییرات فرکانس، نرخ تغییرات فرکانس و تغییرات تابش خورشیدی الگویی برای تعیین خروجی ژنراتور خورشیدی در جهت کاهش نوسانات فرکانسی پیشنهاد شد. نتایج حاصله با نتایج حاصل از روشMPPT به همراه استفاده از ذخیره‌ساز باتری مقایسه شد. در [20] یک بار مجازی در نظر گرفته شده که در زمان اضافه تولید ژنراتور خورشیدی توان مازاد را مصرف می‌کند و زمانی که کمبود تولید وجود داشته باشد، از مدار خارج می‌شود.

با توجّه به رویکرد مورد توجّه قرار گرفته در [29] می‌توان دریافت، موازنه ای بین جنبه اقتصادی بهره‌برداری از واحد خورشیدی و همچنین قابلیّت تنظیم فرکانس شبکه می‌تواند صورت پذیرد در جهتی که تولید خورشیدی توانایی شرکت در کنترل اولیّه فرکانس شبکه را داشته باشد. وقتی تولید خورشیدی به صورت MPPT مورد بهره برداری قرار می‌گیرد هیچ گونه ظرفیت آزادی برای شرکت در کنترل فرکانس نخواهد داشت. به این دلیل که ظرفیتی برای افزایش تولید در این صورت متصور نخواهد بود. ولی اگر سطح توان تولیدی خورشیدی در مقدار بهینه ای از تولید تعدیل گردد، ظرفیتی در دست خواهد بود که با بهره گرفتن از آن واحد خورشیدی می‌تواند سهمی در کنترل اولیّه فرکانس را بر عهده گیرد. به عبارت دیگر می‌توان با داشتن سیستم کنترلی مناسب نظیر سیستم دروپ واحد‌های تولید متداول، مشخّصه دروپی برای تولید خورشیدی در نظر گرفت. بدین ترتیب با بهره گرفتن از این استراتژی با در دست داشتن داشتن شدّت تابش خورشیدی و درجه حرارت محیط و تعیین سقف بیشینه تولید خورشیدی در چهارچوب زمانی کوتاه مدت،  محدوده ای مطلوب جهت بهره‌برداری واحد خورشیدی تعیین نمیود بطوریکه با بهره گرفتن از آن تعادل میان تولید-مصرف (به همراه تلفات) را مجدّداً برقرار نمود. گرچه در این استراتژی کنترلی نیازی مبرم به استفاده از منابع ذخیره‌ساز انرژی محسوس نیست، اما می‌توان به کمک منابع-ذخیره‌ساز‌های توان بالا، مدیرت توان ذخیره شده ی رزرو را بهبود بخشید. با بهره گرفتن از ذخیره‌سازهایی با پاسخ سریع نظیر ذخیره‌ساز باتری می‌توان علاوه بر پوشش موارد فوق، می‌توان ظرفیت جدیدی نیز برای کمک به قابلیّت تنظیم فرکانس شبکه متصور بود [30].

2-2-3- حضور تولید بادی در کنترل فرکانس

از دیگر سو با افزایش حجم تولید بادی و با افزایش ضریب نفوذ توربین‌های بادی در شبکه قدرت ارائه خدمات جانبی نظیر کنترل فرکانس آنها نیز بیش از پیش حائز اهمیت خواهد شد. معمولا نگاه غالب بر این است که حضور تولید بادی حجیم در شبکه و جایگزینی آن به جای تولید متداول، موجب کاهش ظرفیت و تاثیرگذاری تنظیم فرکانس شبکه خواهد شد. پیشرفت‌های اخیر [31] [32] [33] [34] در جهت افزایش ظرفیت‌های کنترلی توربین‌های بادی سرعت-متغیّر نشان داده است که استفاده هرچه بیشتر از تولید بادی نه تنها به معنای کاهش لختی شبکه و توانایی کنترل فرکانس شبکه نخواهد بود، بلکه تحت شرایطی شرکت داده شدن آنها در کنترل فرکانس شبکه را میسّر نموده و سبب افزایش استحکام[2] چنین سیستمی نیز خواهد شد. تحقیقات اولیّه نشان داده است می‌توان از انرژی جنبشی ذخیره شده در پره و قسمت چرخان توربین بادی در کوتاه-مدّت جهت کنترل اولیّه فرکانس بهره جست [34]. توانایی پشتیبانی کوتاه مدت توان اکتیو تولید بادی برای تقویت عملکرد کنترل اولیّه فرکانس در [35] مورد مطالعه قرار گرفته است. حلقه کنترلی اضافی جهت تطبیق نقطه مرجع گشتاور[3] به عنوان تابعی از تغییرات فرکانس و همچنین نرخ تغییرات فرکانس به منظور تسهیل استفاده از لختی پنهان برای استفاده در شبکه فراهم آورده است. همانطور که در [31] عنوان شده ‌است، می‌توان با کنترل لختیِ مولّد DFIG از طریق کنترل تکمیلی لختی پاسخ مناسبی، بوسیله تخلیه انرژی جنبشی موجود در جرم چرخان توربین‌های بادی به عنوان منبع توان اضافی و موقّت  در کنار تولید بادی دریافت نمود. آزاد شدن انرژی موجود در توربین بادی با این شیوه در قیاس با توربین بادی سرعت-ثابت بیشتر خواهد بود. همانطورکه در [32] آمده است، اثر لختی DFIG کاملاً نامعلوم نیست. این اثر به کنترلر جریان روتور وابسته می‌باشد. کنترلر پیشنهادی در [33] براحتی توانسته است به صورت کاملاً پویا، بردار شار القایی روتور DFIG را جهت جلوگیری از بروز تغییرات ناگهانی ولتاژ خروجی کنترل کند. نتیجه استفاده از چنین کنترلری کاهش افت فرکانس ناشی از بروز این اغتشاشات و تلفات ناشی از آن می‌باشد. این پیشرفت‌ها ایده استفاده کسری از انرژی ذخیره شده در توربین DFIG برای پشتیبانی توان حقیقی کوتاه مدت را میسّر می‌سازد، پشتیبانی که در صورت بروز اغتشاشی نظیر تغییر بار، در جهت کاهش افت فرکانس در شبکه مثمر ثمر خواهد بود [36]. در این مرجع با بهره گرفتن از DFIG و پیشنهاد حلقه کنترلی جدید در کنترل اولیّه فرکانس، تولید بادی پشتیبانی توان حقیقی اضافی و موقّت  مزرعه بادی در کنار تولید متداول من جمله حرارتی و آبی در یک سیستم دو ناحیه ای قدرت مورد توجّه قرار گرفت. در این مرجع با بهره گرفتن از برنامه کنترلی ارائه شده، متناسب با ضریب نفوذ ژنراتور بادی و همچنین درصد مشخّصی از پشتیبانی توان حقیقی توسط DFIG و با توجّه به جنس تولید ناحیه (حرارتی یا آبی و یا هر دو) پاسخ گذرای فرکانسی و توان انتقالی خطوط بهبود یافته اند. تحقیقات دیگری نیز جهت کمینه کردن اثرات سوءِ تولید بادی بر شبکه نیز صورت پذیرفته است [37].

2-2-4- استفاده از ذخیره‌سازها

انواع ذخیره‌سازها نظیر ذخیره‌ساز ابررسانای مغناطیسی[4] و همچنین ذخیره‌ساز دو سوی خازنی برای کنترل خروجی تولید بادی پیشنهاد شده‌اند. اثرات سوء تغییرات توان تولیدی نیروگاه بادی بر کنترل فرکانس شبکه در [38] [39]مورد مطالعه قرار گرفته است. در [40] با بهره گرفتن از ذخیره‌سازی انرژی جنبشی (لختی[5] موجود در پره و ماشین) شرکت تولید بادی در کنترل اولیّه فرکانس مورد مطالعه قرار گرفته است. در مرجع [41] روشی برای تعیین سقف مجاز نوسانات تولید بادی در حضور تولید حرارتی عنوان شده ‌است. همچنین با بهره گرفتن از تکنیک‌های مُدال[6] تاثیرات دینامیکی تولید بادی بر کنترل فرکانس اولیّه و ثانویه (تکمیلی) مورد مطالع قرار گرفت است [42] [43] تحقیقات مشابه دیگری نیز جهت مطالعه و بررسی تاثیرات RESs بر بهره‌برداری از شبکه و کنترل ثانویه صورت پذیرفته است [44] [45] [46].

2-3- جمع بندی

در این فصل ابتدا به تبیین مبانی کنترل خودکار تولید پرداخته شد. ورود منابع انرژی تجدیدپذیر به شبکه در مقیاس بالا منوط به برقرار ماندن توانایی شبکه جهت کنترل مطلوب فرکانس عنوان شد. در ادامه مطالب، سابقه تحقیق مورد بررسی قرار گرفت. در بخش کنترل فرکانس سیستم های خورشیدی، عمدتاً توانایی لازم برای کنترل فرکانس شبکه از طریق استفاده از ذخیره ساز ها صورت می پذیرد. علاوه بر آن در اکثر مطالعات صورت گرفته، واحد خورشیدی فاقد کنترلی جهت شرکت در  کنترل فرکانس است. در بخش تولیدات بادی مطالعات اخیر نشان می دهد رویکرد غالب  جهت کنترل فرکانس شبکه، استفاده از انرژی ذخیره شده در جرم چرخان (پره) توربین در صورت لزوم برای ایجاد قابلیت کنترل اولیّه فرکانس می باشد. نشان داده شد اگرچه که این توانایی موقتی و متناسب با انرژی جنبشی موجود در جرم چرخان توربین است، این انرژی پنهان قابل آشکارسازی و الحاق به شبکه است.

در فصل بعدی ایده های جدیدی برای کنترل بهتر فرکانس در حضور همزمان تولید بادی و خورشیدی با ضریب نفوذ بالا در شبکه عنوان می شود.

 

 

 

 

 

 

 

فصل سوم: کنترل فرکانس تولید بادی و خورشیدی

 

 

 

 

 

 

 

 

 

 

 

3-1- مقدمه

در این فصل ساختار‌های واحد تولید انرژی بادی ژنراتورهای دوسو تغذیه (DFIG) و همچنین پانل خورشیدی و همچنین استراتژی‌های کنترلی مورد نیاز آنها جهت مشارکت در کنترل فرکانس بررسی می گردند. همانطور که ذکر شد با افزایش ظرفیت نفوذ تولید بادی، شبکه با کاهش ظرفیت پشتیبانی تنظیم فرکانس مواجه می‌شود. اگرچه طرح‌های کنترلی برای بهبود کنترل فرکانس در ادامه معرفی می‌شود، اما در حضور تولید بادی با ضریب نفوذ بالا، تغییرات غیر قابل پیش بینی تولید بادی و علاوه بر آن با ورود همزمان تولید خورشیدی به شبکه، استفاده از ذخیره‌سازهای توان برای بهبود مرز‌های پایداری سیستم اجتناب ناپذیر می نماید. در ادامه مدلی مناسب جهت استفاده ذخیره‌ساز باتری در کنترل فرکانس بیان می‌شود. جهت بهینه‌سازی پارامترهای مرتبط با کنترل فرکانس شبکه، از الگوریتم بهینه‌سازی نوسان ذرات استفاده می‌شود. در انتهای فصل مختصراً الگوریتم بهینه‌سازی نوسان ذرات شرح داده می‌شود.

3-2- مشارکت تولید بادی ژنراتور القایی دو سو تغذیه در تنظیم فرکانس شبکه

در کنار افزایش ضریب نفوذ بادی در سیستم قدرت، نقش آنها در سرویس‌های جانبی نظیر کنترل فرکانس اهمیّت بیشتری می‌یابد. در حقیقت پس از جایگزینی تولید بادی با توربین بادی سرعت متغیّر و یا تولید خورشیدی به جای تولید متداول، لختی سیستم (جرم چرخان) نیز کاهش خواهد یافت. این جایگزینی نرخ تغییرات فرکانس را افزایش و مقاومت سیستم در قبال اغتشاشات وارده به شبکه را کاهش می‌دهد. اما تحقیقات اخیر نشان داده است، اگر کنترل مطلوبی بر توربین‌های مدرن بادی سرعت متغیّر صورت پذیرد، با وارد شدن نیروی بادی به شبکه لزوماً لختی شبکه کاهش نخواهد یافت [47] [48] [49] [50] [51] . ایده کار، به کار بردن انرژی چرخشی ذخیره شده در پره‌های توربین بادی جهت پشتیبانی کوتاه مدت توان اکتیو می‌باشد. توربین بادی سرعت متغیّر با سیستم کنترلی انعطاف پذیر مبتنی بر اصول الکترونیک قدرت مورد توجّه قرار گرفته‌اند. در نتیجه توان الکتریکی خروجی توربین بادی مدرن سرعت متغیّر بسته به فرکانس شبکه می‌تواند تغییر پیدا کند و در نتیجه پشتیبانی فرکانسی کوتاه مدت برای شبکه محیّا خواهد بود.

در مرجع [47] نشان داده شده که اثر لختی توربین بادی از نوع ژنراتور القایی دو سو تغذیه (DFIG) بسته به خصوصیات پارامترهای کنترلر جریان روتور، از دید شبکه پنهان نیست. با داشتن کنترلر جریانی آهسته تر پاسخ لختی از سیستم ژنراتور القایی دو سو تغذیه قابل استحصال است. تحقیقات صورت گرفته در گزارش [48]، احتمال آزادسازی انرژی جنبشی در توربین بادی مبتنی بر ژنراتور القایی دو سو تغذیه بوسیله با اضافه کردن یک حلقه کنترلی جدید و حسّاس به فرکانس شبکه را به خوبی نشان می‌دهد. مقدار انرژی جنبشی آزاد شده بدین طریق در قیاس با آزاد سازی انرژی جنبشی در توربین بادی سرعت ثابت بیشتر خواهد بود. در سال 2004 سهم این نوع توربین‌ها از کل بازار تولید بادی جهان نزدیک به 60% بوده است [52].

 نتایج مشابهی در [49] به ثبت رسیده است. طرح مشابهی (سیگنال کنترلی اضافی وابسته به فرکانس شبکه) به منظور بدست آوردن پاسخ لختی سیستم ژنراتور القایی دو سو تغذیه در [50] [51] مورد توجّه قرار گرفته است. گزارش‌های اخیر، ایده استحصال بخشی از انرژی چرخشی موجود در قسمت چرخان توربین بادی جهت پشتیبانی کوتاه مدت توان اکتیو را با اصلاح کنترلر گشتاور توربین بادی، که می‌تواند عامل مثبتی در جهت کاهش افت فرکانسی اولیّه سیستم پس از بروز کسری تولید یا افزایش بار در شبکه می‌باشد را در ذهن تداعی کند.

صبغه کار حاضر استفاده از مقدار بیشینه پشتیبانیِ موقّت توانِ اکتیوی است که با آزادسازی انرژی چرخشی پره‌های گردان یک توربین بادی چند مگاواتی دسترس قرار می گیرد (موجود در بازار برق – GE 3.6 MW  ). در این تحقیق شرکت دادن و مشخّص نمودن کاربرد پشتیبانی کوتاه مدت توان اکتیو، به صورت خاص، در یک شبکه دو ناحیه ای حرارتی مورد توجّه قرار گرفته است.

ابتدا مقدار انرژی قابل استخراج از توربین‌ها با کمک گرفتن از مدل یک توربین بادی نمونه بوسیله استحصال توان اکتیو اضافی به صورت موقّت  از آن و در نظر گرفتن مدت زمانی که طول می‌کشد تا سرعت توربین به مرز کمینه سرعت کاری خود برسد، مشخّص می‌گردد. در مرحله بعد، بر اساس این اطلاعات (اینکه چه مقدار افزایش در توان اکتیو حاصل از توربین بادی برای چه مدت متناسب با سرعت وزش باد پابرجاست)، تابع کنترلی ساده ای در کنترل توربین بادی به کار برده شده ‌است و سهم آن در کاهش افت اولیّه فرکانس پس از کسر تولید در یک سیستم حرارتی، مشخّص می‌شود.

3-2-1- کنترل فرکانس توربین بادی سرعت متغیّر

در خلال عملکرد یک توربین بادی، مقداری انرژی در توربین و ژنراتور وجود دارد که کاملاً با ژنراتورهای متداول قابل قیاس است [51]. این انرژی جنبشی می‌تواند در خلال بروز اختلاف تولید و بار در شبکه چه به سبب افزایش بار یا کمبود تولید جهت تأمین پشتیبانی توان اکتیو موقّت  بکار برده شود. توربین بادی سرعت ثابت مستقیماً به شبکه متصل میشود و سرعت چرخشی آنها نمی‌تواند آزادانه تغییر کند. در سوی دیگر، توربین بادی سرعت متغیّر  معمولاً واسطه ای متشکّل از ادوات الکترونیک قدرت دارد که آنرا از شبکه جدا می کند. توربین‌های بادی سرعت متغیّر به گونه ای طراحی شده‌اند تا بتوانند سرعت چرخش خود را در محدوده وسیع تری در خلال بهره برداری تغییر دهند. این کار امکان به کار گرفتن انرژی چرخشی موجود در توربین-ژنراتور را جهت تأمین پشتیبانی موقّت توان اکتیو در زمان بروز اغتشاشی در فرکانس شبکه بدست می‌دهد.

3-2-2- مدل توربین بادی

در پایان‌نامه حاضر توربین بادی سرعت متغیّر  با واسط الکترونیک قدرت جهت استحصال انرژی بادی حاصل از DFIG مورد استفاده قرار گرفته است. مدل منتشر شده ای از توربین بادی تجاری چند مگاواتی سرعت متغیّر در شبیه سازی این پایان نامه مورد استفاده قرار گرفته که از مراجع [53] [54] اقتباس گردیده است. بلوک دیاگرام مدل توربین بادی در شکل 3-1 نشان داده شده ‌است.

شکل 3- 1 بلوک دیاگرام مدل توربین بادی سرعت متغیّر [35].

همانطور که در رابطه (3-1) آمده است، سرعت مرجع  ، بر اساس توان الکتریکی ‌اندازه گیری شده  تولید می‌شود:

(3-1)

توان مکانیکی تولید شده  تابعی از سرعت باد ، سرعت روتور  و زاویه پره  می‌باشد:

(3-2)

که در آن  چگالی هوا،  محیط تحت پوشش پره در هوا،  مقدار بهینه  در  می باشد.

مقادیر ضریب تأثیر قدرت   در چند جمله ای از درجه 4 متشکّل از  (نرخ سرعت پره) و  به منظور بیان ریاضی منحنی‌های  گنجانده شده ‌است. این چند جمله ای عبارتست از:

(3-3)

مقادیر ضرایب  در [35] در دسترس است.  به صورت زیر  تواند بیان شود:

(3-4)

که در آن  سرعت روتور در واحد مبنا،  سرعت باد به ،  سرعت مبنای روتور به  و  شعاع روتور به متر است.

وقتی توان کمتر از 0.7 مبنای واحد است، مرجع سرعت بوسیله رابطه (3-1) محاسبه می‌شود. برای توان‌های بالاتر از 0.7 مبنای واحد، سرعت در مقدار 1.2 مبنای واحد ثابت می‌ماند. وقتی توربین بادی به محدودیت‌های حد بالای تولید توان خود می‌رسد، سرعت گردش روتور بوسیله کنترلر زاویه و با تغییر زاویه پره  کنترل می‌شود. سرعت روتور با بهره گرفتن از معادله لختی مدل تک-جرم معادل توربین-ژنراتور محاسبه می‌شود. معادله لختی از توان مکانیکی استخراج شده از نیروی بادی  و همچنین توان الکتریکی تزریق شده به شبکه  برای محاسبه سرعت روتور استفاده می‌کند. معادله لختی روتور به صورت زیر بیان می‌شود:

(3-5)

که در آن  و  به ترتیب گشتاور مکانیکی و الکتریکی می‌باشد. اگر به جای ،  گذاشته و دو طرف در  ضرب شوند، داریم:

(3-6)

جهت مطالعه بیشتر در باب مدل مورد مطالعه می‌توان به مراجع [53] [54] مراجعه کرد.

منحنی‌های  توربین بر اساس رابطه (3-3) برای زاویه‌های مختلف شیب پره همانطور که در مراجع [53] [54] ذکر شده ‌است در شکل 3-2 رسم شده‌اند.

شکل 3- 2 منحنی‌های C_p برای زاویه‌های پره متفاوت

توان و سرعت روتور توربین محاسبه و در شکل 3-3 رسم شده‌اند.

شکل 3- 3 توان و سرعت روتور توربین به عنوان تابعی از سرعت باد

3-2-3- مقدارسنجی انرژی چرخشی قابل دسترسی از توربین-ژنراتور

به منظور سنجش میزان انرژی قابل استخراج از توربین بادی، قدرتی که به شبکه تزریق می‌شود به صورت موقّت به مقدار  بالاتر از مقدار حالت مانگار آن  (که برای سرعت باد مشخّصی است) افزایش می‌یابد. به این منظور برای سرعت وزش کم و متوسط باد، کنترلر سرعت غیر فعّال شده و نقطه مرجع توان به صورت مستقل همانطور که در شکل 3-4 نشان داده شده ‌است، تنظیم می‌شود.

مقدار انرژی بادی قابل استحصال قبل از رسیدن سرعت توربین به سرعت کمینه برای سرعت‌های متفاوت وزش باد محاسبه شده ‌است. این محاسبات به منظور تعین میزان پشتیبانی اضافی توان اکتیو یک توربین بادی سرعت متغیّر در سرعت مشخّصی از وزش باد (مضاف بر مقدار حالت ماندگار توان الکتریکی تزریقی توربین به شبکه در آن سرعت) همان انرژی مازادی که از انرژی جنبشی موجود در جرم چرخان توربین-ژنراتور  بدست می‌آید و همچنین به منظور مشخّص نمودن مدت زمان تداوم چنین پشتیبانی قبل از رسیدن سرعت توربین به محدودیت سرعت کمینه آن، صورت پذیرفته است.

شکل 3- 4 مدل توربین بادی سرعت متغیّر برای وزش باد با سرعت‌های کم و متوسط (کنترلر زاویه غیر فعّال شده است) [35]

شایان ذکر است، محاسبات تنها نیازمند به در دست داشتن مقادیر ثابت لختی معادل توربین-ژنراتور بادی ، منحنی  برای کمینه مقدار  و همچنین اطلاعات منحنی سرعت روتور توربین بادی بر اساس سرعت باد می‌باشد. این محاسبات ساده می‌تواند مشخّص نماید که چه میزان توان اکتیو اضافی قابل استحصال در مزرعه بادی موجود است که می‌تواند قابلیّت تزریق به شبکه جهت مطالعات پایداری سیستم قدرت گسترده و به صورت خاص، کنترل بار-فرکانس را داشته باشد.

توجّه به این نکته ضروری است، تغییر در توان الکتریکی برابر با   به این معنی است که خروجی الکتریکی از توربین بادی، ، معادل است با  مبنای واحد(  بیشتر از مقدار حالت ماندگار برای این سرعت باد که برابر است با   مبنای واحد می‌باشد). توان اضافی  در مبنای واحد از طریق جذب بخشی از انرژی چرخشی موجود در توربین-ژترانور تأمین می‌شود.

شکل3-5 توان مکانیکی جذب شده توربین بادی از انرژی باد را برای سرعت‌های مختلف وزش باد ( 6-11  ) نشان می‌دهد. متذکر می‌شود شکل این منحنی‌ها شدیداً به مقدار  توربین وابسته می‌باشد. همانطور که از شکل مشهود است، زمانیکه توان مکانیکی جذب شده بیشینه است، در هر سرعت باد به خصوصی سرعت روتور بهینه ای وجود دارد. این مطلب مبیّن این موضوع است عملکرد معمولی توربین بادی منوط به شرایطی است که توربین در نقطه بیشینه منحنی  مورد بهره برداری قرار بگیرد. در این شکل مطلب بوسیله به هم پیوستن نقاط پیداست.

شکل 3- 5 توان مکانیکی تأمین شده از طرف DFIG برای سرعت‌های مختلف باد (B=0)

به غیر از بهره برداری در این سرعت‌های بهینه روتور، توان مکانیکی جذب شده به صورت قابل توجّهی افت می‌کند. زمانیکه محدودیت بیشینه سرعت روتور حاصل می‌شود، با افزایش سرعت باد نقطه فعّالیت در صفحه  به سمت بالا رانده می‌شود (جهت حرکت در شکل3-2 ).

انرژی چرخشی قابل استحصال از توربین-ژنراتور بر اساس مطالبی که در ابتدای بخش عنوان شد، محاسبه شده ‌است [35]. تعادل توان در خلال کاهش سرعت توربین بادی می‌تواند به صورت زیر بیان شود:

(3-7)

که در آن  تفاوت بین توان مکانیکی جذب شده  و توان الکتریکی تزریقی به شبکه  (توان شتابدهنده) نام دارند. اگر توان ورودی مکانیکی  با خروجی توان الکتریکی توربین  در حالت ماندگار برابر باشد و  کاهشی در توان مکانیکی ورودی به توربین به سبب کاهش سرعت چرخشی و خروج از نقطه بهینه باشد با توجّه به ، معادله (3-7) را می‌توان به صورت زیر بازنویسی کرد:

(3-8)

 مدت زمان تداوم تغییر ورودی پله ای در توان الکتریکی  است که می‌تواند مضاف بر حالت ماندگار آن  برای سرعت بار مشخّصی قبل از رسیدن به حد کمینه سرعت توربین  استحصال گردد.

سرعت روتور توربین بادی به صورت خطی با افزایش سرعت باد تا جایی افزایش می‌یابد  که از مرز بیشینه سرعت تجاوز ننماید (محدودیت بیشینه سرعت روتور برای این توربین 1.2 مبنای واحد می‌باشد). اگرچه کاهش توان ورودی مکانیکی به توربین ، از مقدار بهینه ، با افزایش سرعت باد افزایش می‌یابد (شکل3-5)، افزایش در  با افزایش سرعت باد کاهش توان ورودی مکانیکی به توربین را متوقف می‌سازد و با افزایش سرعت وزش باد، می‌توان افزایشی در  را انتظار داشت.

از سوی دیگر، وقتی محدودیت بیشینه سرعت فرا می‌رسد، سرعت چرخش  با افزایش سرعت وزش باد، با افزایش توان ورودی مکانیکی ، افزایش نمی‌یابد. در پی افزایش سرعت وزش باد و افزایش روند کاهشی در توان مکانیکی از مقدار بهینه خود،  با افزایش سرعت وزش باد افزایش می‌یابد و همچنین کاهشی در  مورد انتظار است.

انرژی چرخشی موجود برای سه مقطع مشخّص از سرعت وزش باد مورد سنجش قرار گرفته است:

  • سرعت کم وزش باد: مقطعی که در آن سرعت روتور کمتر از 1.2 مبنای واحد است
  • سرعت متوسط وزش باد: مقطعی که در آن سرعت روتور کمتر از 1.2 مبنای واحد و توان تولیدی کمتر از 1 مبنای واحد است.
  • سرعت زیاد وزش باد: مقطعی که در آن سرعت روتور و توان تولیدی به مقادیر بیشینه شان محدود شده‌اند (1.2 مبنای واحد و 1 مبنای واحد، به ترتیب) و زاویه شیب پره در مقدار بالاتری تنظیم شده ‌است.

سرعت کم وزش باد: شکل (3-6) مدت زمان تداوم افزایش پله ای در خروجی توان الکتریکی  توربین بادی برای دو سرعت متفاوت وزش باد (7.5  و 10.1  ) قبل از رسیدن سرعت روتور به محدوده سرعت کمینه 0.7 مبنای واحد را نشان می‌دهد. همانطور که در شکل مشهود است مدت زمان تداوم افزایش پله ای در خروجی توربین بادی، وقتی مقدار توان الکتریکی پله ای افزایش میابد، روند نزولی به خود می‌گیرد.

شکل 3- 6 مدت زمان تداوم افزایش توان پله ای موقت در خروجی توان الکتریکی توربین بادی برای سرعت‌های کم وزش باد

 در سرعت‌های بالاتر وزش باد، مدت زمان تداوم این افزایش موقّتی توان، در قیاس با سرعت‌های پایین وزش باد، کما اینکه انتظار می‌رود، بیشتر است. اگرچه که محدودیت کمینه سرعت توربین مورد بررسی GE 3.6 MW، 0.7 مبنای واحد در نظر گرفته شده ‌است، کاهش بیشتری نیز در سرعت روتور امکان پذیر است (0.5 مبنای واحد). در سرعت وزش باد 7.5  ، وقتی محدودیت کمینه سرعت، 0.5 مبنای انتخاب شود، توان اضافی معادل با 0.05 مبنای واحد برای مدت زمان 41 ثانیه متصوّر می‌باشد (در مقایسه با 36 ثانیه وقتی محدودیت کمینه سرعت 0.7 مبنای واحد در نظر گرفته شود) [35]. 

سرعت متوسط وزش باد: محاسبات مشابهی برای سرعت‌های وزش باد 10 تا 11  انجام شده ‌است که به ترتیب معادل با 0.85 و 1 مبنای واحد از توان تولیدی بادی است (شکل3-7). در سرعت وزش باد 10.5 ، پشتیبانی توان اکتیوی معادل با 0.05 مبنای واحد، به مدت 38 ثانیه، قبل از اینکه سرعت روتور به محدوده کمینه سرعت مجاز روتور برابر با 0.7 مبنای واحد برسد، متصوّر می‌باشد (در سر عت 10 ، این ظرفیت معادل 49 ثانیه می‌باشد). در سرعت وزش باد 11 ، این ظرفیت به 30 ثانیه کاهش پیدا می‌کند. همانطور که انتظار می‌رفت، مدت زمان تداوم این پشتیبانی با افزایش سرعت باد در مطقعی که سرعت وزش باد متوسط است، کاهش پیدا می‌کند.

شکل 3- 7 مدت زمان تداوم افزایش توان پله ای موقت در خروجی توان الکتریکی توربین بادی برای سرعت‌های متوسّط وزش باد

علی رغم کاهش ظرفیت جهت تأمین چنین پشتیبانی توان اکتیوی در سرعت‌های متوسط وزش باد، توربین بادی مورد بررسی براحتی توانایی تأمین توان اکتیو اضافی معادل با 0.1 مبنای واحد برای بیش از مدت 20 ثانیه، پیش از رسیدن سرعت روتور به محدوده ی کمینه سرعت مجاز روتور را داراست.

سرعت زیاد وزش باد: با افزایش سرعت وزش باد و در خلال وزش بادهای شدید، زمانی که سرعت توربین توسط کنترلر زاویه و با افزایش زاویه پره کنترل می‌شود، قدرت تولیدی به مقدار نامی آن محدود می‌شود. به عبارت دیگر، در خلال این وضعیت، افزایشی در خروجی الکتریکی  می‌تواند توسط مبدل الکترونیک قدرت فراهم گردد. البته با این شرط که درایو، ژنراتور و مبدل توانایی جذب این توان اضافی را در این زمان داشته باشند. در سرعت مشخّصی از وزش باد، افزایش در خروجی الکتریکی موقّتاً می‌تواند توسط افزایشی در ورودی توان مکانیکی بوسیله کنترلر زاویه (کاهش زاویه شیب) جبرانسازی شود. ذکر این نکته ضروری است، بسته به سرعت کنترلر زاویه، کاهش موقّتی در سرعت چرخش توربین ظاهر می‌گردد که منجر خواهد شد توربین بادی برای لحظاتی در سرعت بهینه نچرخد. این مسئله توان تولیدی بادی را پس از اعمال فرمان افزایش توان پس از میان رفتن افت فرکانس شبکه، برای لحظاتی کاهش خواهد داد. جنبه مهّم دیگر موضوع که قابل ذکر به نظر می‌رسد، مسائل مرتبط با پدیده‌های گذرای آئرودینامیکی کنترل زاویه می‌باشد. زمانیکه کاهشی در زاویه شیب پدید می‌آید، نیروی آئرودینامیکی از مقدار مثبت اولیّه خود با میزان فراجهش مشخّصی به مقدار مثبت بالاتری می‌رود [55] [56].  در نتیجه، حتی در خلال وزش بادهای شدید (سرعت وزش باد بالاتر از 11  )، پشتیبانی توان اکتیو اضافی نیز فراهم خواهد بود.

شکل 3-8 زاویه شیب لازم برای تأمین سطوح متفاوتی از پشتیبانی توان اکتیو را برای سرعت‌های مختلف وزش باد، نشان می‌دهد.

شکل 3- 8 زاویه شیب پره برای برداشت سطوح مختلف توان اکتیو در سرعت‌های بالای وزش باد

شایان ذکر است، تغییر کمی در زاویه شیب پره از مقدار ابتدایی خود برای میسّر نمودن پشتیبانی توان اکتیو اضافی در هر سرعت باد معینّی لازم به نظر می‌رسد. همچنین، تغییر در میزان زاویه شیب پره جهت دریافت یک سطح معین از پشتیبانی برای سرعت‌های وزش باد کمتر، کمتر خواهد بود.

البته، مقادیر نمودار‌های عنوان شده به ثابت لختی توربین بادی   و شکل منحنی  وابسته می‌باشد. ثابت لختی   و منحنی  برای انواع توربین‌ها متفاوت خواهد بود. در نتیجه مقادیر مورد نظر در اینجا می‌تواند متناسب با سازندگان مختلف توربین تغییر کند.

3-2-4- کاربرد پشتیبانی موقّت  توان اکتیو DFIG در کنترل فرکانس سیستم قدرت

شکل1-8 مدل خطی سیستم دو ناحیه ای قدرت را جهت انجام مطالعات کنترل بار فرکانس نشان می‌دهد. ناحیه کنترلی 1، ناحیه ای متشکّل از تولید حرارتی و همچنین تولیدی بادی سرعت متغیّر دو سو تغذیه DFIG را نشان می‌دهد. سیستم قدرت دو ناحیه ای حرارتی در اینجا مشابه سیستم قدرت ارائه شده در [2] می‌باشد. هر ناحیه متشکّل از یک واحد حرارتی با ظرفیت نامی 500 مگاوات می‌باشد. اطلاعات سیستم قدرت در جدول-1 در ضمیمه آمده است. پاسخ دینامیکی سیستم قدرت به انحراف باری معادل با 0.1 توان مبنای ناحیه 1 در حضور تولید بادی DFIG با ضریب نفوذ‌های مختلف، در نرم افزار Matlab/Simulink r2013a مورد بررسی قرار می‌گیرد. در بخش بعدی تغییرات بوجود آمده در لختی سیستم به سبب تغییر در ضریب نفوذ تولید بادی مورد بررسی قرار می‌گیرد.

3-2-5- تغییر در تنظیم دروپ واحد‌های تولید بادی توسط DFIG بدون قابلیّت پشتیبانی فرکانس

ساختار اصلی تنظیمات دروپ مانند قبل ثابت است؛ افزایش ضریب نفوذ بادی، افزایشی در دروپ معادل (کاهشی در بهره معادل دروپ) را به همراه دارد. با داشتن ضریبی معادل با ، تنظیم دروپ به فرم بیان شده در معادله 3-9 تغییر می کند:

(3-9)

3-2-6- تغییر در ثابت لختی سیستم بدون پشتیبانی فرکانس از طرف تولید بادی

افزایش ضریب نفوذ تولید بادی منجر به جایگزینی بیشتر آن با تولید متداول گشته و به طبع آن لختی سیستم نیز کاهش می‌یابد. این وضعیت به بدتر شدن وضعیت تنظیم فرکانس شبکه در نبود هیچ گونه پشتیبانی فرکانسی از طرف DFIG می انجامد.

% ضریب نفوذ تولید بادی به معنای % کاهش در توان موجود در تولید متداول است. به این معنی که % از لختی شبکه کاسته شده و هیچگونه کنترل فرکانسی نیز در پی این جایگزینی تمهید نشده است. در نتیجه لختی سیستم به صورت زیر تغییر می‌کند:

(3-10)

در پی این تغییر و با افزایش ، لختی شبکه نیز کاهش می‌یابد و منجر به افت بیشتری در فرکانس می‌شود.

3-2-7- تغییر در تنظیم فرکانس و ثابت لختی سیستم در حضور سیستم پشتیبانی فرکانس

کنترلر سریع توان/گشتاور DFIG، فرکانس‌های الکتریکی و مکانیکی ماشین را از هم جدا می سازد و بدینوسیله عملکرد سرعت متغیّر آنرا فراهم می سازد. هر تغییری در سرعت سیستم در گشتاور و یا سرعت DFIG منعکس نمی‌شود؛ همانطوری که عملکرد ژنراتور-مبدل نیز مستقل از فرکانس شبکه است. در نتیجه، از دید شبکه، DFIG هیچ گونه لختی برای شبکه به همراه ندارد. هر چند که پاسخ لختی از طرف DFIG‌ها را می‌توان به کمک سیگنال‌های کنترلی کمکی فراهم کرد [47] [48] [49] [50] [51].

ثابت لختی اصلاح شده سیستم در حضور تولید بادی DFIG با ضریب نفوذ  و با پشتیبانی فرکانس را می‌توان به صورت زیر عنوان کرد:

(3-11)

سهم لختی مزرعه بادی ، همانطوری که توسط سیستم قدرت تجربه می‌شود، در زمانی که توربین‌های بادی پشتیبانی موقّت  توان اکتیوِ اضافی معادل با  با تخلیه انرژی جنبشی موجود در جرم چرخان توربین را فراهم می‌کنند، توسط رابطه3-12 بیان می‌شود:

(3-12)

که در آن:

(3-13)

برای یک تغییر بار پله ای  و ضریب نفوذ مشخّصی از تولید بادی ، لختی توربین‌های بادی موقّتاً به لختی شبکه اضافه شود. به عبارت دیگر با تحویل توان اضافی، علاوه بر توان حالت ماندگار تحویلی توربین‌های بادی به کنترلر مبدل پاور الکترونیک، با جذب انرژی ذخیره شده در قسمت چرخان توربین‌ها لختی شبکه نیز به نسبت افزایش می‌یابد.

سهم لختی توربین بادی ، بر اساس مدل تاخیری توربین- گاورنر که در [35] [57] بیان شده، بدست آمده است. ثابت لختی  مجدّداً می‌تواند برای ضریب نفوذ مشخّصی از تولید بادی و همچنین سطح مشخّصی از پشتیبانی موقّت توان اکتیو محاسبه شده و برای اصلاح ثابت لختی معادل سیستم، در معادله 3-10 وارد شود.

مجموع تاخیر زمانی  که در معادله 3-12 عنوان شد، بر اساس مدلی است که در [57] بیان شده است.  زمانی است که در آن بیشترین تغییر فرکانس پس از بروز اغتشاشی در بار پدید می‌آید. این تاخیر متشکّل است از ثابت زمانی گاورنر ، ثابت زمانی ناشی ازحرکت دریچه شیر بخار  و همچنین تأخیر ناشی از پاسخ توربین .

(3-14)

از اینرو، مجموع تاخیر زمانی ، برای هر واحد تولیدی منحصر به فرد می‌باشد. برای نیروگاه‌های حرارتی می‌توان تأخیر زمانی را به صورتی که در ادامه می‌آید، نتیجه گرفت:

  • تأخیر زمانی مرتبط با گاورنر:
  • تأخیر زمانی ناشی از حرکت دریچه شیر بخار :
برای توربین بخار باز گرم کن:
  • تأخیر ناشی از پاسخ توربین :
برای تورین بخار باز گرم کن [35] :

همانطور که عنوان شد، قابلیّت تنظیم فرکانس بر اساس رابطه 3-8 برای ضرایب نفوذ مختلف باد و شدّت باد، تغییر می‌کند. تغییر در لختی سیستم در ازای ضرایب مختلف نفوذ تولید بادی، متناسب با نقشی که تولید بادی در کنترل فرکانس شبکه می پذیرد، متفاوت است. تغییر لختی سیستم وقتی تولید بادی در کنترل فرکانس شرکت نمی‌کند مطابق رابطه 3-10 و وقتی در آن شرکت دارد برابر رابطه 3-11 تعیین می‌شود. با حضور تولید بادی DFIG بدون آنکه مدل جامع  DFIGدر آن وارد شود، مقادیر تخمینی تنظیم فرکانس و ثابت لختی شبکه در مدل خطی سیستم دوناحیه ای قدرت نشان داده شده در شکل 1-8 تغییر کرده و تاثیرات حضور سیستم کنترلی در آن در نظر گرفته می‌شود. جدول 3-1 مقادیر تخمینی تنظیم دروپ و لختی سیستم قدرت در حضور تولید بادی DFIG برای افزایش توان اکتیو معادل 0.05 توان مبنای مزرعه بادی در حضور ضرایب نفوذ متفاوت تولید بادی را نشان می‌دهد.

در حضور قابلیت پشتیبانی فرکانس   بدون پشتیبانی فرکانسی   شاخص
30% 20% 10%   30% 20% 10% 0% ضریب نفوذ
                پارامتر
0.0714 0.0625 0.055   0.0714 0.0625 0.055 0.05
4.2185 4.5061 4.7654   3.5 4 4.5 5

جدول 3- 1تغییر در تنظیم دروپ واحد های تولیدی و لختی سیستم برای ضریب نفوذ های متفاوت باد

3-2-8- کنترلر پیشنهادی برای پشتیبانی توان اکتیو از DFIG برای کنترل فرکانس

مشابه تولید متداول، توربین‌های بادی مقدار مشخّصی انرژی جنبشی در قسمت چرخان توربین خود ذخیره می کنند. در مورد توربین‌های بادی سرعت متغیّر این انرژی نقشی در کمک به لختی شبکه ندارد. زیرا ادوات الکترونیک قدرت حائل میان توربین بادی و شبکه، کوپلاژ میان سرعت چرخشی و فرکانس شبکه را از بین می‌برد. به عبارت دیگر حضور مبدل الکترونیک قدرت میان توربین بادی و شبکه، مفهوم لختی توربین‌های بادی را برای شبکه از میان می‌برد.

معمولاً، کنترلرهای توربین بادی سرعت متغیّر سعی می‌کنند توربین‌ها را در سرعت بهینه‌ای مورد بهره برداری قرار دهند تا بتوانند بیشینه توان را متناسب با آن استحصال کنند. کنترلر بر اساس سرعت و توان الکتریکی اندازه گیری شده، نقطه مرجع گشتاور را تعیین می‌کند.

همانطور که شکل (3-1) نشان می دهد نقطه مرجع گشتاور ، ورودی مبدل الکترونیک قدرت است که با کنترل کلیدزنی و تنظیم جریان خروجی مبدل، توان تحویلی به شبکه را تأمین می‌کند. برای بکار بردن انرژی و لختی توربین‌های بادی جهت تزریق توان اکتیو به شبکه و کمک به کنترل فرکانس، سیگنال کنترلی جدیدی مطابق با آنچه در شکل 3-9 در داخل خط چین نشان داده شده است، پیشنهاد می‌شود.

این سیگنال کنترلی در زمان تشخیص انحراف فرکانس در شبکه، کنترل اولیّه فرکانس توربین‌های بادی  DFIG را فعّال کرده و تغییر توان اکتیوی متناسب با تغییرات فرکانس سیستم  و همچنین نرخ تغییرات فرکانس شبکه  برای شبکه قدرت فراهم می‌آورد. اثر لختی توربین‌های بادی با ثابت کنترلر  و پشتیبانی کنترل اولیّه فرکانس نسبت مستقیم با  دارد. این افزایش توان علاوه بر مقدار توان تحویلی توربین‌های بادی قبل از بروز اغتشاش بار  بوده و با اعمال سیگنال کنترلی جدید انرژی جنبشی موجود در جرم چرخان توربین‌ها به این مقدار اضافه شده و مقدار جدیدی  را اخذ می کند. لازم به ذکر است بخاطر جذب انرژی جنبشی موجود در توربین‌های چرخان بادی جهت تزریق آن به شبکه، سرعت چرخش توربین‌ها از سرعت بهینه شان کاهش می‌یابد. نرخ کاهش سرعت توربین بادی به تغییرات فرکانس و نرخ تغییرات آن وابسته است.

ذکر این نکته ضروری است، توان اکتیو اضافی DFIG، تنها در دوره ای گذرا در کنترل اولیّه فرکانس شرکت دارد. وقتی سیستم به حالت ماندگار جدیدی دست پیدا کرد که با حالت بهینه آن اختلاف دارد، نرخ تغییرات فرکانس توسط ثابت میراکنندگی بار و تنظیم دروپ سیستم تاثیر می پذیرد. کنترلر انتگرالگیر

شکل 3- 9 کنترلر پیشنهادی برای پشتیبانی فرکانس

حلقه ثانویه کنترل (AGC) سعی در از بین بردن خطای حالت ماندگار شبکه می کند و فرکانس شبکه و توان انتقالی خطوط را به مقدار نامی و از پیش مقرّر شده آن باز می‌گرداند. در نتیجه، سیگنال کنترلی اضافی ای که برای مبدل الکترونیک قدرت در نظر گرفته شده بود و به عنوان تابعی از تغییرات فرکانس و نرخ تغییرات فرکانس عمل می‌کرد(شکل 3-9 )، غیرفعّال شده و عملکرد نرمال DFIG پیگیری می‌گردد تا مجدّداً سرعت چرخش توربین‌های بادی را به میزان بهینه آن باز گرداند و زمینه مشارکت‌های بعدی را فراهم کند.

3-3- مشارکت واحد های تولید توان خورشیدی در کنترل فرکانس شبکه

با توجّه به سابقه تحقیق مطرح شده در باب کنترل فرکانس سیستم‌های تولید انرژی خورشیدی که در فصل پیش آمد، مشخّص شد، جایگزینی تولید خورشیدی به جای تولید متداول مستقیماً لختی شبکه را کاهش می‌دهد. علاوه بر آن با توجّه به نوسانات تابشی خورشید، توان استحصالی از انرژی خورشید ثابت نبوده و با تغییر شدّت تابش خورشید، تغییر می‌کند. خصوصیاتی که استحصال انرژی توسط سیستم‌های خورشیدی به صورت MPPT به دنبال دارد، ویژگی‌های مطلوبی برای بهره‌برداری از تولید خورشیدی در مقیاس بالا نیست. ورود یک چنین منبع کنترل نشده‌ای به شبکه، بار اضافی برای سیستم‌های کنترل فرکانس به حساب می‌آید.

در این بخش ابتدا به چگونگی جذب انرژی خورشیدی توسط پانل‌های خورشیدی و معادلات مربوطه بیان می‌شود. در ادامه استراتژی کنترلی مناسبی برای شرکت دادن تولید خورشیدی در کنترل اولیّه فرکانس بیان می‌شود. تاثیرات استفاده از یک چنین سیستم کنترلی بر روی سیستم قدرت مدل شده و ساختار کنترل فرکانس بار شبکه در حضور این کنترلر به روز می‌شود.

3-3-1- مشخّصات پانل‌های خورشیدی و مدلسازی آنها

در اینجا به صورت مختصر خصوصیات و مدل ماژول‌های خورشیدی بیان می‌شود [58]. ماژول خورشیدی، تجهیزی غیر خطی است که می‌توان آنرا همانطور که در شکل 3-10 آمده به عنوان منبع جریان در نظر گرفت.

با صرفنظر از مقاومت‌های سری داخلی ، می‌توان معادلات متداول  یک ماژول خورشیدی را به صورت بیان شده در رابطه 3-16 ذکر کرد:

(3-16)

شکل 3- 10 مدار معادل ماژول خورشیدی [21]

که در آن  و  به ترتیب جریان و ولتاژ خروجی ماژول خروجی می باشند.  جریان تولیدی تحت تابش خورشیدی،  جریان اشباع معکوس،  شارژ الکتریکی الکترون،  ثابت بولتزمن،   فاکتور ایده‌آلی دیود،  دمای ماژول خورشیدی (به کلوین)،  تعداد سلول‌های خورشیدی موازی و  جریان ذاتی شاخه مقاومت موازی ماژول خورشیدی است. همانطور که در معادله 3-17 فرمول بندی شده، جریان اشباع ماژول خورشیدی  با نوسانات دما تغییر می‌کند:

(3-17)
(3-18)

که در آن  جریان اشباع در دمای مرجع ،  انرژی باند خالی،  ضریب تاثیر دمای جریان اتصال کوتاه ماژول خورشیدی است. مقدار جریان شاخه‌های موازی به صورت زیر حاصل می‌شود:

(3-19)

که در آن  تعداد سلول‌های سری و  مقاومت موازی داخلی ماژول خورشیدی است.

شکل 3-11 ساختار کلی ژنراتور خورشیدی متصل به شبکه را نشان می دهد.

شکل 3- 11 ژنراتور خورشیدی متصل به شبکه

با توجه مدلسازی که بیان شد، در یک تابش مشخصی از خورشید و یک دمای معین، پانل‌های خورشیدی با توجه به ولتاژ نقطه کار خود توان جریان مشخصی را تولید می کند. این نقطه کار با توجه به ولتاژ  ماژول خورشیدی حاصل می شود. این ولتاژ از طریق رفرنس ولتاژ واسط الکترونیک قدرت به این ادوات اعمال می شود. برای یک ماژول خورشیدی معادلات بیان شده در 3-16 الی 3-19، در نرم افزار Matlab/Simulink r2013a مدل شده و به ازاء تغییرات رفرنس ولتاژ ماژول‌های خورشیدی، منحنی‌های  و  به ازاء تابش‌های مختلف خورشید برای دمای عادی محیط معادل با 300 درجه کلوین (27 درجه سانتیگراد)، در شکل‌های 3-12و 3-13 رسم شده اند. از این نمودار‌های اینطور استنباط می‌شود که آرایه‌های خورشیدی غیر خطی‌اند و نقطه کار آنها به شدّت با تغییر تابش خورشید و همچنین ولتاژ رفرنس تغییر می‌کند.

شکل 3- 12 منحنی V_I ماژول خورشیدی

 

 

 

شکل 3- 13 منحنی V_P ماژول خورشیدی

3-3-2- استراتژی کنترلی پیشنهادی برای مزرعه خورشیدی

همانطور که بیان شد می‌توان دینامیک سیستم قدرت متشکّل از چندین ژنراتور سنکرون را به فرم خطی شده زیر مدل کرد [2]:

(3-20)

که در آن  فرکانس سیستم در مبنای واحد،  و  به ترتیب توان مکانیکی و الکتریکی کل در مبنای واحد،  ثابت لختی به ثانیه و  عامل میراکننده در مبنای واحد است. به خاطر اینکه معمولاً ثابت زمانی بزرگی در ارتباط با دینامیک توان مکانیکی  وجود دارد (نظیر دینامیک بویلر)، در چهارچوب زمانی کوتاه مدت لختی سیستم نقشی مهّم در تعیین حسّاسیت فرکانس سیستم نسبت به عدم تعادل میان تولید و مصرف دارد. از طرفی عامل میراکننده تعیین کننده قابلیّت سیستم در جذب عدم تعادل توان و کم کردن تغییرات حالت ماندگار فرکانس سیستم دارد.

3-3-3- تغییر در تنظیم دروپ واحد‌های تولیدی در حضور تولید خورشیدی با ضریب نفوذ

ساختار اصلی تنظیمات دروپ مانند قبل ثابت است؛ افزایش ضریب نفوذ بادی، افزایشی در دروپ معادل (کاهشی در بهره معادل دروپ) را به همراه دارد. با داشتن ضریبی معادل با ، تنظیم دروپ به فرم بیان شده در معادله 3-21 تغییر می نماید:

(3-21)

3-3-4- تغییر در ثابت لختی سیستم در حضور تولید خورشیدی

همانند تولید بادی، در حضور تولید خورشیدی با ضریب نفوذ  در شبکه معادله تعادل توان 3-19 کماکان برقرار است. ولی از آنجا که تولید خورشیدی هیچ جرم چرخانی ندارد و انرژی ذخیره شده ای در خود ندارد، حضور تولید خورشیدی با ضریب نفوذ   در شبکه منجر به کاهش لختی سیستم صورت معادله 3-22 می‌شود:

(3-22)

در چنین شرایطی اگر تولید خورشیدی سهمی در توانایی تنظیم فرکانس نداشته باشد، تغییرات بار در شبکه منجر به تغییرات شدیدتری در فرکانس سیستم خواهد شد.

3-3-5- مشارکت واحد تولید خورشیدی در تنظیم فرکانس شبکه

جهت فائق آمدن بر مشکلات نامطلوب ورود تولید سیستم‌های خورشیدی، طرح کنترلی جدیدی برای شرکت دادن تولید خورشیدی در تنظیم فرکانس سیستم قدرت پیشنهاد شد [29]. در این طرح کنترلی، برای اینکه سیستم خورشیدی تنظیماتی مشابه تنظیم دروپی مشابه با ژنراتورهای سنکرون داشته باشد، یک گاورنر سرعت مجازی برای آن طراحی شده است. علاوه بر آن زمانی که کسری بار یا افزایش تابش شدیدی رخ داد، می بایست توان خروجی واحد خورشیدی سریعاً محدود گردد تا عدم تعادل توان تغییرات توان کمینه گردد. پس از یک تاخیر زمانی، سیستم خورشیدی می‌تواند مجدّداً به حالت کنترل دروپ خود باز گردد.

از مدل تک خطی سیستم خورشیدی متصل به شبکه که در شکل 3-11 نشان داده شده است، نیز می‌توان برای نشان دادن طرح کنترلی استفاده شود. لازم به ذکر است در طرّاحی فعلی، از دینامیک سریع اندوکتانس داخلی اینورتر در مقایسه با دیگر اجزای سیستم صرفنظر شده است [59] .همانطور که در شکل 3-14 نشان داده شده است استراتژی کنترلی را می‌توان در سه سطح بیان نمود:

شکل 3- 14 ساختار اصلی سیستم کنترلی

در سطح 1، یک کنترلر PWM مطابق حلقه دوگانه کنترلی مشغول بکار خواهد بود (جهت اطلاعات بیشتر به [21] مراجعه شود). حلقه خارجی ولتاژ آرایه خورشیدی  و توان راکتیو  آنرا کنترل می‌کند، در صورتی که حلقه داخلی جریان کنترل می کند. خروجی این سطح توان تنظیم شده ی  و  می‌باشد. تحت این کنترل، زمانی که ولتاژ آرایه خورشیدی  دقیقا برابر با ولتاژ رفرنس  باشد، توان تزریقی به شبکه  نیز برابر با مقدار تعیین شده آن می‌باشد. یعنی با تعیین ولتاژ رفرنس  و اعمال آن به این سطح کنترلی توان خروجی اینورتر متناسب با مقدار خواسته شده خواهد بود.

با فرض اینکه مدل دقیق منحنی  آرایه ی خورشیدی نامعلوم است، وظیفه اصلی سطح 2 کنترلی یافتن  متناسب با  در شرایطی است که  کوچکتر از ماکزیموم توان موجود و قابل دسترسی توسط MPPT،  باشد (حالت کنترل دروپ) و همچنین یافتن  به گونه ای متناسب با  در شرایطی است که  بزرگتر از ماکزیموم توان موجود و قابل دسترسی توسط MPPT،  باشد (حالت MPPT). ورودی سطح 2 کنترلی، ،  و  می‌باشد.

کنترل فرکانس در سطح 3 کنترلی قسمت اعظم طرح کنترلی به کار رفته را مشخّص می‌کند. سیستم خورشیدی حاضر در حالت کنترل دروپ مورد بهره برداری قرار می‌گیرد و در صورت نیاز می‌تواند به حالت کنترل اضطراری وارد شود.

لازم به ذکر است، در اینجا به طور خاص با توجّه به زاویه دید این تحقیق تنها حالت کنترلی دروپ مورد توجّه قرار دارد. ورودی سطح 3 کنترلی، تغییرات فرکانس سیستم  و خروجی آن  برای سطح 2 کنترلی خواهد بود.

طرح کنترلی بیان شده می‌تواند بر روی انواع سیستم‌های خورشیدی با توپولوژی‌های مختلف اینورتر در سطح 1 کنترلی مورد استفاده قرار گیرد. تاثیر استفاده از طرح کنترلی پیشنهادی به شدّت وابسته به شرایط بهره برداری سیستم‌های خورشیدی نظیر تابش خورشید و دما است [29]. 

3-3-6- الگوریتم سطح 2 کنترلی برای کنترل توان اکتیو

برای رسیدن به مشخّصات مطلوب تنظیم فرکانس، کنترل سطح 2 می‌بایست دو خصیصه مهّم را برآورده سازد:

  1. توان اکتیو تزریق شده به شبکه وسیله سیستم خورشیدی رفرنس توان تولیدی تعیین شده را به سرعت دنبال کند.
  2. بتوان توان اکتیو را در رنج نسبتاً وسیعی تغییر داد (برای مثال از 0 تا بیشینه توان قابل تولید(MPPT) ).

در الگوریتم‌های پیشین که از حبس تولید (Curtailment) استفاده کردند، سیستم‌های خورشیدی تنها در بخش چپ منحنی  مورد استفاده قرار می‌گرفتند [60] و [61]. در نتیجه پاسخ نه چندان سریع به رفرنس توان بدنبال داشتند. با انتخاب نقاط کاری سمت راست نقطه ماکزیموم توان در منحنی  جهت انتخاب نقطه کار، سرعت دنبال کردن رفرنس توان نسبتا افزایش می‌یابد. در [29] الگوریتمی مبتنی بر درونیابی درجه دوم نیوتون برای رسیدن به نقطه کار جدیدی که به عنوان رفرنس توان مد نظر قرار دارد به کار گرفته شد. اساس کار این الگوریتم استفاده از فرآیندی تکراری برای تعیین ولتاژ لازم برای آرایه خورشیدی است، به نحوی که در این ولتاژ آرایه خورشیدی رفرنس توان را تولید کند. برای مثال این الگوریتم می‌تواند با چند تکرار ولتاژ  متناظر با  در زمانی که  می‌باشد و یا تعیین  هنگامی که  باشد را در زمان کوتاهی تعیین کند.

سطح 3 کنترلی دینامیک سریعی دارد و در قیاس با دینامیک باقی اجزا در مطالعات کنترل خودکار تولید (دینامیک میان مدت)، قابل صرفنظر کردن است.

3-3-7- حالت کنترلی دروپ برای سیستم‌های خورشیدی

کنترل دروپ فرکانس، تکنیکی شناخته شده برای تنظیم فرکانس سیستم قدرت به حساب می‌آید. توان خروجی اکتیو یک ژنراتور سنکرون  متناسب با تغییرات فرکانس سیستم قابل تنظیم است. خصوصاً اینکه تنظیمات به گونه ای انجام می‌شود که توان اکتیو نامی در فرکانس نامی تولید گردد. اگر فرکانس سیستم کمتر از مقدار نامی گردد، نشان می‌دهد  بیشتر از مقدار نامی است و بالعکس.

در این بخش، اِعمال ساختار کنترل دروپ فرکانس بر سیستم‌های خورشیدی شرح و بسط داده می‌شود. اما در اینجا دو محدودیت عمده در قیاس با کنترل دروپ ژنراتورهای سنکرون وجود دارد:

  1. عدم کنترل بر منابع توان اولیّه، محدودیتی سنگین بر حد بالای تولید در توان تزریقی به شبکه اِعمال می‌کند.
  2. ماکزیموم توان قابل بهره برداری از تولید خورشیدی، همانطور که در مدلسازی تولید خورشیدی عنوان شد، به شدّت تحت تاثیر شدّت تابش خورشید و دما است. در نتیجه در بکار بستن کنترل دروپ باید توجه داشت که می‌بایست منحنی دروپ فرکانس را با نقاط کاری متنوعی تطبیق داد.

بر اساس ویژگی‌های بیان شده، می‌توان تابعی توصیف نمود که خروجی رفرنس توان اکتیو را با فرکانس سیستم ارتباط می‌دهد:

(3-23)

که در آن  و  شرایط نامی بهره برداری شبکه است. رابطه 3-23 بیان می‌دارد بدون احتساب محدودیت حداکثر تولید،  می‌تواند به صورت  محاسبه گردد. این فرم مشابه محاسباتی است که برای ژنراتورهای سنکرون نیز انجام می‌شود [2]. زمانی که  به سقف مجاز تولید می‌رسد، مقدار  به آن اختصاص می‌یابد و قابلیّت تنظیم فرکانس را نیز از دست می‌دهد. در منحنی دروپ فرکانس نشان داده شده در شکل 3-16، خطوط عمودی و افقی به ترتیب، مشخّصه دروپ را در حضور و عدم حضور سقف مجاز تولید  نشان می‌دهد.

فرکانس بحرانی فرکانسی است که در آن  با  برابر خواهد شد:

(3-24)

به طور خاص، سیستم خورشیدی توان ماکزیموم  را زمانی تولید می‌کند که فرکانس شبکه  کمتر از فرکانس بحرانی  بوده و زمانی که فرکانس سیستم  بالاتر از فرکانس بحرانی  باشد، میزان مشخّصی از تولید را حبس می نماید. به صورت مشخّص می‌توان عنوان کرد که میزان توان باقیمانده برای رسیدن به ماکزیموم توان تولید فرکانس بحرانی  منحنی دروپ را تعیین می‌کند.

به منظور به کار بردن طرح کنترلی دروپ برای تولید خورشیدی شکل 3-15 تهیه شده است.

شکل 3- 15 دیاگرام کنترل دروپ فرکانس

همانطور که در شکل 3-15 مشخص است مشابه ساختار مشخصه دروپ گاورنر ماشین های سنکرون ، ابتدا میزان خطای فرکانس از انتگرال‌گیر ی گذشته و سپس توسط  تقویت می‌شود. خروجی این واحد، میزان تغییر توان خروجی واحد را تعیین می کند [2]. در سیستم دروپی که برای واحد خورشیدی در نظر گرفته می شود، خروجی سیستم گاورنر، رفرنس توان سطح 2 کنترلی است. دینامیک کنترلر توان اکتیو را می‌توان به صورت تابع تبدیل درجه اول خطی با ثابت زمانی  و نرخ محدودیت تولید در نظر گرفت [62]. محدودیت تولید را ظرفیت تولید واحد خورشیدی  تعیین می کند. در این مطالعه  ثانیه و ضریب تقویت سیگنال  برابر با 100، در نظر گرفته شده است [29].

زمانی که  به بار  متصل شده است، واحد خورشیدی تحت حالت کنترل دروپ مورد بهره برداری قرار می‌گیرد. در این حال، مشخصّات کنترل دروپ مستقیماً تحت تاثیر دینامیک واحد خورشیدی قرار می‌گیرد:

  1. در اینجا باید توجّه داشت که ضریب باید مطابق با کد شبکه و قابلیّت کلی در تنظیم فرکانس، مطابقت داشته باشد. در سیستم تحت بررسی حاضر  در نظر گرفته می‌شود (شکل3-16).

شکل 3- 16 کنترل دروپ حالت ماندگار سیستم خورشیدی

  1. معمولا را شرایط کاری شبکه مشخّص می‌کند. زمانی که مقدار بالایی به خود می‌گیرد فرکانس شدیدا افت کند، تولید خورشیدی نمی‌تواند در کنترل فرکانس مشارکت داشته باشد. در صورتیکه با مقدار کمتری از ، قابلیّت تنظیم فرکانس واحد خورشیدی افزایش می‌یابد. در این حالت تأمین پشتیبانی قابلیّت تنظیم فرکانس واحد خورشیدی در شبکه به قیمت قربانی کردن توانی است که با تابش شدید خورشید قابل استحصال می‌باشد. به عبارت دیگر، موازنه ای بین مزایای اقتصادی و ظرفیت پشتیبانیِ فرکانس صورت می پذیرد. در حقیقت، سهم تولید خورشیدی در شبکه، باید با توجّه به الگو‌های بار و اغتشاشات احتمالی و همچنین قابلیّت مورد انتظار پشتیبانی فرکانس تعیین گردد. برای مثال در یک سیستم ایزوله کوچک با ضریب نفوذ بالای تولید خورشید، مجموع ظرفیت تنظیم فرکانس شبکه ضعیف است. در نتیجه برای سیستم خورشیدی الزامی است با نقطه بارگذاری پایین‌تر پشتیبانی فرکانسی بیشتری را تأمین نماید.
  2. زمانی که فرکانس شبکه به پایین تر از فرکانس بحرانی نزول می‌کند،  ممکن است به بالاتر از  ارتقا یافته و مقداری را اختیار نماید که غیر قابل تأمین است. در این حال زمان نسبتا زیادی لازم است تا  به میزان  باز گردد. از این رو، اکتواتور‌های اشباع اختیار کار را به دست می گیرند و طرح‌های Anti-Windup پیاده سازی گردند [63].

لازم به ذکر است طرح‌های Anti-Windup زمانی فعّال می شوند که تولید خورشیدی به اشباع رفته باشد. در شبیه سازی انجام شده نقطه کار به گونه ای انتخاب شده که اشباعی در تولید اتفاق نیفتد.

در نهایت می توان بلوک دیاگرام سیستم کنترلی پیشنهادی برای مشارکت واحد خورشیدی در کنترل فرکانس را مطابق دیاگرام داخل خط چین شکل 3-17 نشان داد:

شکل 3- 17 ساختمان کنترل دروپ پیشنهادی برای سیستم خورشیدی

3-4- استفاده از ذخیره‌ساز‌های انرژی در سیستم قدرت

سیستم‌های ذخیره‌ساز انرژی باتری می‌تواند راه حل‌های گوناگونی را برای ارتقای کیفیت توان سیستم‌های تولید توان متشکّل از منابع تجدیدپذیر معرفی کند [64] [65]. از آنجا که سیستم ذخیره‌ساز باتری قابلیّت جبران سازی توان اکتیو سریعی دارد، می‌تواند در مسأله کنترل بار فرکانس سیستم قدرت موفق ظاهر شود. علاوه بر این ذخیره‌ساز باتری موجب افزایش قابلیّت اطمینان سیستم در پیک بار به حساب می آیند. با داشتن دینامیک مناسب از ذخیره‌سازهای باتری می‌توان در زمینه‌های مختلفی چون سطح بندی بار، رزرو سیستم، پایدارسازهای توان خطوط بلند، تنظیم فرکانس سیستم اصلاح ضریب توان و غیره نام برد. بعضی از نمونه‌های موفّق استفاده از ذخیره‌ساز باتری را واحد ذخیره‌ساز 17 مگاواتی برلین [66] و 10 مگاوات/40مگاوات-ساعتی واحد چینو واقع در جنوب شرقی کالیفرنیا [67] دانست.

3-4-1- مدل ذخیره‌ساز باتری

مدار معادل واحد BES را می‌توان به صورت مبدل متصل به یک باتری معادل همانند شکل 3-18 در نظر گرفت.

شکل 3- 18 بلوک دیاگرام مدل خطی ذخیره‌ساز باتری [30]

در مدار معادل باتری،  زاویه آتش مبدّل،  راکتانس جابجاسازی،  جریان DC باتری،  مقاومت اضافه ولتاژ،  ظرفیت خازن اضافه ولتاژ    ولتاژ مدار باز باتری،  اضافه ولتاژ باتری،  مقاومت اتصالی و  مقاومت داخلی باتری،  مقاومت تخلیه خودی باتری و  ظرفیت خازنی باتری را نشان می‌دهد. ولتاژ DC ماکزیموم بی باری مبدل 12 پالسه همانطور که در رابطه 3-25 آمده، با  نشان داده شده است:

(3-25)

که در آن  ولتاژ rms خط می‌باشد. جریان DC تأمینی باتری بوسیله معادله 3-26 بیان می‌شود:

(3-26)

بر اساس بررسی مدل مداری مبدل، توان اکتیو و راکتیو جذب شده واحد BES بوسیله معادلات3-27  و 3-28 بیان می‌شود:

(3-27)
(3-28)

که در آن  و  زاویه آتش مبدل شماره 1 و شماره 2 به کار رفته در مدل BES می‌باشد.

در مطالعات کنترل بار فرکانس عملکرد واحد BES را می‌توان به صورت یک تابع تبدیل درجه اول به فرم زیر و به همراه یک محدود کننده جهت محدود سازی توان تزریقی(مشخص کننده توان نصب شده ذخیره‌ساز در ناحیه) ، تقریب زد [64]:

(3-29)

که در آن  تغییرات فرکانس،  خروجی توان واحد BES،  بهره واحد تولیدی و  ثابت زمانی واحد BES می‌باشد،  و .

3-5- الگوریتم بهینه‌سازی نوسان ذرات

کنترل خودکار تولید با بازگرداندن فرکانس شبکه و توان انتقالی خطوط به مقدار نامی و برنامه ریزی شده در پی بروز اغتشاشی در بار، نقشی مهّم در سیستم‌های قدرت بر عهده دارند.

پس از بروز انحرافی در بار، برای از بین بردن انحراف ماندگار فرکانس شبکه و باز گرداندن آن به مقدار نامی، حلقه کنترل فرکانس ثانویه می‌بایست با بهره‌هایی بهینه، پاسخگوی این نیاز باشند. در این مرحله، بهره‌های کنترلر انتگرال‌گیر حلقه ثانویه توسط تکنیک بهینه‌سازی نوسان ذرات بهینه شده اند.

این الگوریتم در ابتدا توسط کندی [68]معرفی شد. با بهره گرفتن از این تکنیک پاسخ‌های با کیفیتی با خصوصیات همگرایی پایدار در زمانی کمتر فراهم می‌شود. این تکنیک از ذراتی استفاده می‌کند که نماینده پاسخ‌های بالقوه برای مسئله به حساب می آیند. تمام ذرات با سرعت معینی در فضای جستجو به حرکت در می آیند. موقعیت ذره  ام  نام دارد و سرعت این ذره در تکرار  به صورت زیر تعریف می شوند:

(3-30)
(3-31)

که در آن  تکرار،  تعداد ذرات،  وزن لختی است که به صورت خطی با روند تکرار الگوریتم کاهش می‌یابد،  و  ثابت‌های مکان،  و  شماره‌هایی تصادفی که به صورت یکنواخت از 0 تا 1 انتخاب می‌شوند،  تکرار الگوریتم،  بهترین موقعیت قبلی ذره  ام و  موقعیت بهترین ذره است. در هر تکرار پاسخ بهینه در سلول  جایگذاری می گردد. با ادامه روند بهینه‌سازی و در انتهای تکرار‌ها  پاسخ مسئله خواهد بود. شکل 3-19روند اجرای الگوریتم را نشان می‌دهد.

مقدار دهی اولیّه  
تکرار  
  محاسبه مقدار برازندگی ذرات
  مقایسه مقادیر برازندگی با  و
  تغییر سرعت و موقعیت ذرات متناسب با معادلات 3-29 و  3-30
پایان ( مرز همگرایی یا بیشینه تعداد تکرار)  

شکل 3- 19روند اجرایی تکنیک PSO

3-6- شبکه ترکیبی

با توجه به برنامه های کنترلی پیشنهادی جهت مشارکت تولیدات بادی و خورشیدی و همچنین ذخیره سازها در کنترل فرکانس، میتوان مدل کنترل بار فرکانس سیستم دو ناحیه ای قدرت شکل2-8 را در حضور منابع انرژی تجدیدپذیر و ذخیره سازی باتری به صورت شکل 3-20 به روز کرد.

شکل 3- 20 بلوک دیاگرام سیستم دو ناحیه ای قدرت در حضور مزرعه بادی DFIG و مزرعه خورشیدی و ذخیره ساز باتری

در این شکل تولیدات بادی در ناحیه 1 مستقر شده و با بهره گرفتن از سیگنال ورودی تغییرات فرکانس در کنترل فرکانس شرکت داده می شود. تولیدات خورشیدی نیز در ناحیه 2 نصب شده و با تغییرات فرکانس ناحیه 2 در کنترل فرکانس شرکت دارند. علاوه بر این دو ذخیره ساز های نصب شده در دو نو ناحیه نیز متناسب با حجم نصب شده در ناحیه ظرفیت جدیدی برای مشارکت در کنترل اولیّه فرکانس پدید می آورند.

3-7- جمع بندی

در این فصل ابتدا تاثیرات ورود تولید بادی DFIG به شبکه دو ناحیه ای قدرت مدل شد. نشان داده شد که جایگزینی تولید بادی به جای تولید متداول به معنای کاهش لختی و توانایی تنظیم فرکانس شبکه خواهد بود. در ادامه با بهره گرفتن از مدل توربین بادی 3.6 مگاواتی جنرال الکتریک، ایده استفاده از انرژی جنبشی موجود در جرم چرخان توربین بادی مورد توجه قرار گرفت کنترلری جهت استخراج این انرژی و معنا بخشیدن به مفهوم لختی توربین بادی عنوان شد. در کنترلر پیشنهادی با بروز انحرافی در فرکانس، این تابع کنترلی فعال شده و توان اکتیو کوتاه مدتی را برای شبکه از طریق جذب انرژی جنبشی موجود در جرم چرخان توربین تا رسیدن سرعت پره به مرز پایینی سرعت مجاز تأمین می کند. این توان موقت علاوه بر سطح توان تولیدی بادی است. این توان اکتیو موقت با مقدار تغییرات فرکانس و همچنین نرخ تغییرات فرکانس سیستم متناسب است. پس از رسیدن فرکانس به سطحی قابل قبول و یا رسیدن سرعت چرخش روتور توربین بادی به سرعت کمینه، این حلقه کنترلی غیر فعال می شود.

در ادامه سیستم کنترلی جدید برای سیستم خورشیدی در شبکه دو ناحیه ای قدرت مورد استفاده قرار گرفت. طرح کنترلی پیشنهاد شده برای استفاده از تولید خورشیدی در سیستم دو ناحیه ای قدرت در نظر گرفتن سطحی بین 0 تا مقدار بیشینه توان قابل تأمین از طرف تولید خورشیدی به صورتی که ظرفیت مازادی در دسترس بوده باشد. برای این ظرفیت رزرو سیستمی مشابه سیستم دروپ واحد های تولید متداول عنوان شد. متناسب با تغییرات فرکانس و ثابت دروپ سیستم خورشیدی، خروجی واحد خورشیدی تغییر می کند. این تغییر توان متناسب با اعمال ولتاژ مشخصی به اینورتر ها و قسمت الکترونیک قدرت شبکه است. این بخش با یک تابع تبدیل درجه اول با ثابت زمانی نسبتاً کوچکی مدل شد. کنترلر پیشنهادی متناسب با تغییرات فرکانس و ضریب نفوذ تولید بادی در کنترل فرکانس اولیّه شرکت می کند.

در ادامه ساختار داخلی ذخیره ساز باتری به اختصار بیان شد. مدلی جهت شرکت ذخیره ساز باتری در کنترل فرکانس عنوان شد. جهت بهینه سازی پارامتر های سیستم قدرت از الگوریتم هوشمند بهینه سازی ازدحام ذرات استفاده می‌شود. قواعد حاکم بر این تکنیک بیان شد. در انتها با توجه به نکات مطروحه در باب مشارکت تولیدات بادی و خورشیدی در کنترل اولیّه فرکانس و حضور ذخیره‌سازها، مدل سیستم قدرت به روز شد. در فصل آینده با توجه به مدل کنترلی بیان شده نتایج شبیه سازی بیان می گردد.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فصل چهارم: شبیه سازی و ارائه نتایج

 

 

 

 

 

 

 

 

 

 

 

4-1- مقدمه

در این فصل با توجّه به حضور تولیدات انرژی تجدیدپذیر در شبکه،  پاسخ دینامیکی شبکه در حضور ضریب مشخّصی از تولید بادی و یا تولید خورشیدی و یا هر دو همزمان، بدون بکار بردن برنامه‌های کنترلی جهت کنترل فرکانس و با بکار بردن آنها مورد مقایسه قرار می‌گیرند. اثر استفاده از ذخیره‌ساز‌ها در حضور همزمان تولید بادی DFIG با پشتیبانی موقّت  توان اکتیو و تولید خورشیدی با اعمال کنترلر دروپ فرکانس طی چند سناریو بررسی شده و ضریب نفوذ بهینه‌ای برای استفاده از منابع انرژی تجدیدپذیر تعیین می‌شود. برای داشتن پاسخ فرکانسی مطلوب و از بین بردن خطای حالت ماندگار بهره‌های کنترلر انتگرال‌گیر حلقه کنترلی ثانویه توسط الگوریتم بهینه‌سازی نوسان ذرات، بهینه شده و نتایج حاصله بیان می‌شود.

4-2- حضور DFIG در کنترل فرکانس سیستم قدرت

در شبیه سازی حاضر، بنا بر این است که پاسخ دینامیکی سیستم قدرت تحت  ضرایب مختلف نفوذ تولید بادی و با داشتن سطوح گوناگونی از پشتیبانی توان اکتیو از جانب DFIG بررسی شود. مدل سیستم قدرت مورد استفاده قرار گرفته در شبیه سازی در شکل2-8 نشان داده شده است. پارامترهای سیستم قدرت دو ناحیه ای حرارتی در جدول-1 در بخش ضمیمه آمده است. هنگامیکه اغتشاش باری سبب بروز افت فرکانس در ناحیه می‌شود، تولیدات سنتی و همچنین مزرعه ی بادی DFIG باید برای پشتیبانی فرکانس توان بیشتری را تأمین نمایند. از مدل خطی شده ی سیستم دو ناحیه ای حرارتی که در فصول قبل معرفی شد، به همراه مدل معرفی شده DFIG برای پشتیبانی توان اکتیو جهت نشان دادن قابلیّت‌های رویکرد کنترلی عنوان شده تحت ضرایب نفوذ مختلف استفاده شده است. تنظیم سیستم‌های دروپ و همچنین محاسبه ثابت لختی شبکه در حضور ضریب نفوذ مشخّصی از تولید بادی مطابق رابطه‌های 3-10 و 3-11 محاسبه می‌شود.

تولید بادی DFIG و پشتیبانی توان اکتیو تأمین شده از جانب آن را می‌توان تحت چند حالت بررسی کرد:

DFIG با ضریب نفوذ مشخّص، هیچگونه پشتیبانی فرکانسی را تأمین نمی‌کند. در چنین شرایطی تمام توان مورد نیاز برای جبران افت فرکانس از ژنراتورهای سنکرون و تولید متداول حاصل می‌شود. اغتشاش باری  معادل با 0.1 مبنای واحد در ناحیه ی 1 که مزرعه بادی در آن واقع شده، در ثانیه 5 شبیه سازی اتفاق می‌افتد. شکل‌های 4-1 و 4-2 منحنی‌های افت فرکانس در دو ناحیه برای ضریب نفوذ مختلف را نشان می‌دهد.

زمانی که DFIG پشتیبانی فرکانس را تأمین نمی‌کند، ضریب نفوذ بیشتر تولید بادی به سبب کاهش بیشتر در لختی سیستم منجر به افت بیشتر فرکانس خواهد شد. علاوه بر این در چنین شرایطی با افزایش ضریب نفوذ و در نتیجه اغتشاش فرکانسی حاد تر، توان بیشتری از طریق تولید متداول تأمین می‌شود. شکل‌های4-3 تا 4-5 تغییر توان ژنراتورهای ناحیه 1 و 2 و همچنین توان انتقالی خط ارتباطی بین ناحیه را نشان می‌دهد.

 

 

 

 

 

شکل 4- 1تغییرات فرکانس ناحیه 1 در حضور سطوح مختلف تولید بادی در سیستم قدرت

شکل 4- 2 تغییرات فرکانس ناحیه 2 در حضور سطوح مختلف تولید بادی در سیستم قدرت

 

شکل 4- 3 تغییر توان ژنراتور ناحیه 1

شکل 4- 4 تغییر توان ژنراتور ناحیه 2

 

شکل 4- 5 تغییرات توان انتقالی خط ارتباطی بین ناحیه‌ای

علاوه بر پشتیبانی فرکانسی که تولیدات متداول انجام میدهند، DFIGs نیز می توانند در کنترل فرکانس مشارکت داشته باشند(شکل 3-9). در شکل‌های 4-6 الی 4-8 پاسخ دینامیکی سیستم قدرت شامل تغییرات فرکانس نواحی و تغییرات توان خط واسط زمانیکه DFIG در کنترل فرکانس مشارکت دارد و نیز زمانی که DFIG  پشتیبانی فرکانسی تأمین نمی‌کند و همچنین پاسخ شبکه بدون حضور هیچگونه تولید تجدیدپذیر (پاسخ پایه) رسم شده و با یکدیگر مقایسه می‌شوند. در شبیه سازی توان اضافی تأمینی برای پشتیبانی فرکانس  معادل با 0.05 مبنای واحد (بر پایه توان نامی مزرعه بادی) به رفرنس توان افزوده شده است. فرض شده است سرعت باد در سراسر مزرعه بادی یکنواخت بوده و معادل با 9.5  باشد و در طول دوره شبیه سازی ثابت باقی ماند. در چنین شرایطی مدت زمانی که طول می کشد سرعت چرخش روتور توربین بادی به مرز 0.7 مبنای واحد (حداقل سرعت) برسد معادل با 58 ثانیه می‌باشد.

ضریب نفوذ تولید بادی در ناحیه 20% در نظر گرفته شده است. همانطور که مشخّص است در حضور تولید بادی DFIG و بدون پشتیبانی فرکانس، افت فرکانس نسبت به پاسخ پایه بیشتر است. در حالتی که DFIG در پشتیبانی فرکانس مشارکت دارد، شبکه پاسخ نسبتاً بهتری دریافت می‌کند.

 

شکل 4- 6 تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده

شکل 4- 7 تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده

 

شکل 4- 8 تغییرات توان انتقالی خطوط

با بهره گرفتن از تابع پشتیبانی کنترل فرکانس پیشنهادی علاوه بر توان مشخّصی که قبل از بروز اغتشاش DFIG برای شبکه تأمین می‌نمود، تغییر توانی موقّت متناسب با تغییرات فرکانس و همچنین نرخ تغییرات فرکانس جهش افزایش موقّت لختی و ظرفیت تنظیم فرکانس شبکه حاصل می‌شود. با فراهم آوردن این توان اضافی، سرعت روتور کاهش می‌یابد و انرژی جنبشی بیشتری را به شبکه تزریق نموده که منجر به جبران سازی بهتر اغتشاش وارده به سیستم  می‌شود.  در ضریب نفوذ تولید بادی در شبکه ضرب می‌شود تا از توان مبنای مزرعه بادی به مبنای ناحیه تبدیل شود. در ادامه با وارد عمل شدن انتگرال‌گیر‌های کنترل ثانویه تغییرات فرکانس رفته‌رفته کاهش یافته و تقریبا به صفر می‌رسد. در نتیجه تقاضای توان اضافی اکتیو از بین می‌رود و توربین بادی مجدّداً به وضعیت کارکرد معمولی خود وارد شده و سعی در بازیابی سرعت بهینه خود تحت دارد.

شکل‌های 4-9 و 4-10 توان خروجی ژنراتورهای سنکرون در دنبال کردن الگوی بار را در حالاتی که تولید بادی وجود ندارد، ضریب نفوذ DFIG 20% و پشتیبانی فرکانس وجود ندارد و در زمانیکه پشتیبانی فرکانس برقرار هست را با پاسخ پایه مقایسه می‌کند. طبیعتاً زمانی که تابع پشتیبانی فرکانس در DFIG فعّال می‌شود، علاوه بر افزایش توانایی کنترل فرکانس شبکه با کمتر شدن میزان تغییرات توان مکانیکی توربین واحدهای حرارتی، فشار کمتری بر تجهیزات تولید توان متداول نیز وارد می‌آید.

 در نیروگاه‌های بخار حجم قابل توجّهی از بخار در محفظه بخار و باز گرمکن، تأخیری در زمان لازم جهت تغییر توان مکانیکی به وجود می آورد. به همین دلیل واکنش سریع توربین‌های بادی DFIG در تأمین توان اکتیو اضافی و موقّت  برای شبکه، موقعیت خوبی برای کمک به سیستم قدرت در جهت کاهش شدّت افت اولیّه فرکانس پدید می آورد.

شکل‌های 4-11 تا 4-13 پاسخ فرکانسی دو ناحیه و تغییر توان خط انتقالی هنگامیکه مزرعه بادی DFIG پشتیبانی توان اکتیو بیشتری برای شبکه تأمین می کند را نمایش می‌دهد. همانطور که از شکل‌ها استنباط می‌شود با در نظر گرفتن پشتیبانی توان اکتیو بالاتری از سوی DFIG و مزرعه بادی، حضور موثرتر تولید بادی DFIG در کنترل فرکانس اولیّه نیز تضمین می‌شود (ضریب نفوذ تولید بادی 20% می باشد).

 

 

شکل 4- 9 تغییرات توان خروجی ژنراتور سنکرون ناحیه 1

 

شکل 4- 10  تغییرات توان خروجی ژنراتور سنکرون ناحیه 2

شکل 4- 11 تغییرات فرکانس ناحیه 1

 

شکل 4- 12 تغییرات فرکانس ناحیه 2

شکل 4- 13 تغییرات توان انتقالی بین ناحیه 1 و 2

4-3- مشارکت سیستم‌های خورشیدی در کنترل فرکانس سیستم قدرت

برای نشان دادن طرح پیشنهادی کنترلی، مدل سیستم دو ناحیه ای قدرت به کار رفته در بخش قبل مجدّداً استفاده می‌شود. ساختار پیشنهادی برای کنترل اولیّه فرکانس سیستم خورشیدی را می‌توان در سه بخش مدل کرد. ابتدا یک بهره ثابت که ثابت تنظیم دروپ می‌باشد، تغییرات فرکانس ناحیه را دریافت نموده و متناسب با ضریب تقویت سیگنال تغییرات فرکانس و ثابت دروپ  سیگنال کنترلی جدیدی که مشخّص کننده تغییرات رفرنس توان برای مشارکت در کنترل فرکانس است را به مبدل الکترونیک قدرت اعمال می‌کند. همانطور که ذکر شد، از آنجا که مبدل الکترونیک قدرت دینامیک نسبتاً سریعی دارد از دینامیک آن در مقابل باقی ادوات صرفنظر شده است. در ادامه تغییر توان مزرعه خورشیدی در ضریب نفوذ سیستم خورشیدی در شبکه ضرب شده تا از توان مبنای واحد سیستم خورشیدی به توان مبنای ناحیه، تبدیل گردد. در انتها این تغییر توان سیستم خورشیدی که در پی بروز تغییرات فرکانس در شبکه بوجود آمده بود، به شبکه تزریق می گردد.

گرچه با در نظر داشتن یک محدود کننده برای تغییر تولید سیستم خورشیدی می‌توان سقف تولید را در میزان  محدود کرد، اما در این مطالعه صرفاً بنا بر نشان دادن قابلیّت مشارکت مزرعه خورشیدی در کنترل فرکانس شبکه گذارده شده است. ضریب نفوذ تولید خورشیدی معادل 10% توان نامی و تنظیم دروپ سیستم خورشیدی  در نظر گرفته شده است. همچنین میزان تابش خورشید در حدی در نظر گرفته شده که تغییر بار اعمالی به سیستم و افت فرکانس ناشی از آن، منجر به اشباع شدن تولید خورشیدی نگردد.

با در نظر گرفتن سیستم کنترلی دروپ شکل (3-17) برای مزرعه خورشیدی شبیه سازی انجام گرفت. در این قسمت سیستم قدرت دو ناحیه ای حرارتی که در بخش قبل استفاده شده، در نظر گرفته شد. مزرعه خورشیدی در ناحیه دوم واقع شده و اغتشاشی باری معادل با 0.1 در مبنای واحد ناحیه به ناحیه 2 اعمال شده است. در نتیجه انحراف فرکانس در شبکه بوجود می‌آید. جهت از بین بردن این انحرافات، علاوه بر پشتیبانی فرکانسی که تولید متداول تأمین می‌کند، مزرعه خورشیدی نیز در کنترل اولیّه فرکانس شرکت دارد. سیستم کنترلی دروپ واحد خورشیدی تغییرات فرکانس را در اندازه گیری کرده و متناسب با تنظیم دروپ تغییر توان خروجی واحد را مشخّص می‌کند این سیگنال کنترلی که حاوی میزان تغییرات توان است، به الگوریتم تعیین سطح جدید رفرنس ولتاژ برای کارکرد مبدل الکترونیک قدرت اعمال می‌شود. در نتیجه متناسب با تغییر رفرنس ولتاژ، خروجی مزرعه خورشیدی تغییر می‌کند.

شکل‌های 4-14 الی 4-16 به ترتیب پاسخ فرکانسی ناحیه 1 و 2 و همچنین تغییرات توان انتقالی خط ارتباطی را در سه حالت نشان می‌دهد. حالت اول مربوط به زمانی است که در شبکه تولید خورشیدی وارد نشده و اغتشاش بار اعمال می‌شود (پاسخ پایه). حالت دوم زمانی است که تولید خورشیدی با ضریب نفوذ 10% در ناحیه دوم مشغول تولید توان می‌باشد. حالت سوم حالتی است که مزرعه خورشیدی پشتیبانی فرکانسی نیز برای شبکه به همراه دارد.

در پی بروز انحراف فرکانس سیستم گاورنر سرعت تولید متداول، خروجی ژنراتور سنکرون را تغییر می‌دهد. در شکل‌های 4-17 و 4-18 تغییرات ژنراتورهای واقع در ناحیه 1 و 2 در کنار الگوی بار در سه حالت بیان شده فوق نشان داده شده است.

 

 

شکل 4- 14 تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده

 

شکل 4- 15تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده

شکل 4- 16تغییرات توان انتقالی خطوط برای موارد در نظر گرفته شده

 

شکل 4- 17تغییرات توان خروجی ژنراتور سنکرون ناحیه 1

شکل 4- 18تغییرات توان خروجی ژنراتور سنکرون ناحیه 2

نتایج نشان می‌دهد که با به کار بردن سیستم کنترلی دروپ برای واحد خورشیدی ظرفیت جدیدی برای حضور مزارع خورشیدی در کنترل فرکانس شبکه فراهم شده است.

4-4- مشارکت همزمان تولید بادی DFIG و سیستم‌های خورشیدی در کنترل فرکانس سیستم قدرت

در این بخش شبیه سازی تاثیرات استفاده همزمان از تولیدات انرژی تجدیدپذیر در دو ناحیه مورد کنکاش قرار می‌گیرد. مزرعه بادی با ضریب نفوذ 20% در ناحیه 1 و مزرعه خورشیدی با ضریب نفوذ 10% در ناحیه دوم قرار دارند. برای نشان دادن قابلیّت کنترل فرکانس شبکه در حضور منابع انرژی تجدیدپذیر، وقوع افزایش بار پله ای معادل با 0.1 توان مبنا در هر دو ناحیه در ثانیه 5 شبیه سازی، در نظر گرفته شد.

نتایج حاصله کما فی السابق طی سه حالت بیان شده بررسی می شوند. در شکل‌های 4-19 تا 4-21 پاسخ فرکانسی ناحیه 1 و 2 و تغییر توان خط انتقالی نشان داده شده است. در پی تغییرات فرکانس در شبکه، مزرعه بادی DFIG و همچنین مزرعه خورشیدی در کنترل فرکانس شبکه شرکت دارند. در نتیجه بخشی از توان لازم برای برقرار مجدّد تعادل تولید و مصرف، توسط منابع تجدیدپذیر شبکه تأمین گشته شکل4-21 و از طرفی همانطور که شکل‌های 4-22 و 4-23 نشان می‌دهد، فشار مکانیکی وارده به توربین ژنراتورهای سنکرون برای جبرانسازی بار نیز کاهش بیشتری نسبت قبل نشان می‌دهد.

وقتی درخواست توان اکتیو اضافی معادل با 0.05 مبنای واحد (بر پایه توان مزرعه بادی) برقرار است به این معنی است که سقف مجاز برداشت از مزرعه بادی نهایتاً می‌تواند 0.05 مبنای واحد قرار گیرد. این میزان در ضریب نفوذ ناحیه ضریب شده و نهایتاً میزان توان اکتیوی که متناسب با کنترلر پیشنهادی به شبکه تزریق شده است را تعیین می‌کند. علاوه بر این متناسب با کنترل دروپی که برای مزرعه خورشیدی معیّن شده بود، توان خروجی سیستم خورشیدی نیز تغییر می کند. این تغییرات توان منابع انرژی تجدیدپذیر هنگام جبرانسازی افزایش بار و مشارکت در کنترل فرکانس، در شکل4-24 نشان داده شده است.

 

 

 

 

شکل 4- 19تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده

شکل 4- 20 تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده

 

شکل 4- 21تغییرات توان انتقالی خط ارتباطی

شکل 4- 22تغییرات توان خروجی ژنراتور سنکرون ناحیه 1

 

شکل 4- 23تغییرات توان خروجی ژنراتور سنکرون ناحیه 2

شکل 4- 24 تغییرات توان خروجی منابع تجدیدپذیر با بهره گرفتن از برنامه‌های کنترلی پیشنهادی

4-5- استفاده از ذخیره‌ساز باتری در سیستم قدرت

همانطور که ذکر شد، با توجّه به نوسان توان و طبیعت غیر قابل پیش بینی تولید توان بادی بهره‌برداران شبکه ترجیح می دهند برای افزایش قابلیّت تنظیم فرکانس شبکه و جبران کسری تولید احتمالی و یا جذب توان، از ذخیره‌ساز‌ها در کنار تولید بادی جهت نرم کردن توان خروجی بادی استفاده کنند. در همین راستا اثر ورود واحد ذخیره‌ساز انرژی باتری BES به سیستم قدرت مورد بررسی قرار می‌گیرد. علاوه بر استفاده از BES چند حالت برای استفاده از باتری در شبکه با ضریب نفوذ مختلف تولید باد و خورشید در دو ناحیه مطرح می‌شود. با بهره گرفتن از تنظیمات هر حالت پاسخ شبکه ثبت و ضبط شده و با توجّه تابع هدف یا شایستگی مناسبی مورد سنجش قرار می گیرند. در اینجا تابع شایستگی می تواند سیگنال خطای متعارفی نظیر IAE، ITAE، ITSE و ISE انتخاب شود. تجربه نشان داده است برای کمینه کردن مقادیر خطا با کمترین دامنه در کم ترین زمان سیگنال خطای ITSE می تواند موفق تر ظاهر شود [69].

فرض برینست که ظرفیت ذخیره ساز در دسترس معادل با 0.1 توان مبنا باشد.این مقدار می تواند در کنار تولید بادی، خورشیدی و یا متناسب با ضریب نفوذ تولیدات تجدیدپذیر در دو ناحیه نصب شود. برای نشان دادن اثر افزایش ضریب نفوذ تولیدات تجدیدپذیر با استراتژی های کنترلی پیشنهادی بر پایداری فرکانسی شبکه ترکیبی نهایی، سناریوهای مورد بررسی قرار گرفتند و مقدار تابع برازندگی متناسب با آنها در جدول 4-1 محاسبه شده است:

جدول 4- 1سناریو‌های باتری در شبکه و مقدار شایستگی متناسب با ضریب نفوذ منابع و باتری

سناریو ض. ن. تولید بادی ض. ن. تولید خورشیدی باتری تماماً در ناحیه تولید بادی باتری تماماً در ناحیه تولید خورشیدی تقسیم ظرفیت ذخیره ساز به نسبت ضریب نقوذ در دو ناحیه
1 0.1 0 0.315124    
2 0.2 0 0.323752    
3 0 0.1   0.292224  
4 0 0.2   0.282575  
5 0.1 0.1     0.276772
6 0.1 0.2     0.267122
7 0.2 0.1     0.285383
8 0.2 0.2     0.275714

 

جدول 4-1 نشان می دهد سناریو شماره 4 که در آن فقط تولید بادی در ناحیه 2 وجود دارد و تمام ظرفیت ذخیره‌ساز در همین ناحیه نصب شده باشد، دارای کمترین میزان سیگنال خطای  است. با توجه به ورود همزمان تولیدات بادی و خورشیدی به شبکه، سناریوی 6 نسبت به باقی حالات از پاسخ دینامیکی نسبتاً بهتری برخوردار است. با توجه به نتایج جدول 4-1 اینطور استنباط می شود با افزایش ضریب نفوذ بادی در حضور طرح کنترلی پیشنهادی پاسخ دینامیکی وضعیت نسبتا حاد تری پیدا می کند. این در حالیست که افزایش ضریب نفوذ خورشیدی و کنترل آن بوسیله سیستم دروپ نه تنها باعث کاهش ظرفیت تنظیم فرکانس نخواهد شد که موجب افزایش ظرفیت تنظیم فرکانس نیز شده است. با مقایسه سناریو های 5 و 8 نیز نتایج مشابهی به دست می آید.

4-6- بهینه‌سازی پاسخ دینامیکی شبکه

همانطور که عنوان شد، پس از بروز انحرافی در بار، برای آنکه فرکانس شبکه بدون داشتن انحراف ماندگاری به مقدار نامی خود بازگردد، حلقه کنترل فرکانس ثانویه می‌بایست با بهره‌هایی بهینه، پاسخگوی این نیاز باشند. به عبارت دیگر هدف در اینجا کم کردن تغییرات فرکانس و توان انتقالی خطوط در کمترین زمان ممکن است. علاوه بر این درین مرحله، میزان توان ذخیره ساز نصب شده در هر ناحیه و نیز ضریب نفوذ تولیدات بادی و خورشیدی جهت داشتن پاسخ دینامیکی بهتر وارد بهینه سازی می گردد. مطمئناً با داشتن خصوصیات فوق پاسخ شبکه نسبت به باقی حالات در نظر گرفته شده وضعیت بهتری خواهد داشت.

الگوریتم PSO نسبت به تنظیمات اولیّه حسّاس بوده و پس از چند بار اجرای برنامه مقادیر برای تنظیمات کنترلی الگوریتم انتخاب شد. این مقادیر در جدول-2 در بخش ضمیمه آمده است. با نوشتن کدهای لازم جهت انجام شبیه سازی در نرم افزار Matlab/Simulink r20103a و مرتبط ساختن فایل سیمولینک به بخش محاسباتی الگوریتم شبیه سازی صورت می پذیرد. لازم به ذکر است که مجموع توان ذخیره ساز در دو ناحیه با توجه به مقدار تعیین شده 0.1 توان مبنا فرض می گردد. برای بهینه سازی، سیگنال کنترلی جدیدی ارائه شده که متناسب با قیود حاکم در آن پاسخ بهینه سازی به فرم مطلوب تر همگرا گردد. بدین صورت می توان مدلسازی حل مسئله را به فرم زیر میتوان بیان کرد:

4-1

به صورتی که

4-2
4-3
4-4

در تابع هدف جدید جهت از بین بردن انحراف فرکانسی، حفظ کمترین مقدار فراجهش و فروجهش و در عین حال داشتن کوتاه ترین زمان ممکن برای رساندن انحرافات ماندگار به مقدار 0، مبنای بهینه سازی قرار گرفته است. پس از چند بار سعی و خطا مقادیر مطلوبی برای داشتن پاسخی مطلوب تر بدست آمد. در معادله (4-1) مقدار  برابر با 20 ،  برابر با 0.01 و  برابر با 0.001 در نظر گرفته شده است. معیار تعیین زمان نشست حاشیه 0.02% فرض می شود. با توجه به نکات بیان شده بهینه سازی صورت گرفت و نتایج حاصله در شکل های 4-25 الی4-29 نشان داده می شود. در این نمودارها دو سناریو مطرح شد. در سناریو ی اول بهره انتگرال گیر ها به همراه حجم ذخیره ساز در هر ناحیه بهینه شد. در سناریوی دوم که در واقع همان مدل پایه شبکه می باشد از هیچیک از منابع انرژی تجدیدپذیر و ذخیره سازی در شبکه استفاده نشده و بهره ها همان میزان 0.2 سابق را دارند. جدول 4-2 مقادیر بهینه شده شاخص های انتخابی را نشان می دهد.

پارامتر
مقدار 0.358572 0.390833 0.167477 0.1747 0.0418608 0.0581392

جدول 4- 2 مقادیر بهینه شده توسط الگوریتم PSO

 

 

 

شکل 4- 25 مقایسه انحراف فرکانس ناحیه 1 در حضور مقادیر بهینه باتری و ثات انتگرال گیر ناحیه

شکل 4- 26  مقایسه انحراف فرکانس ناحیه 2 در حضور مقادیر بهینه باتری و ثابت انتگرال گیر ناحیه

 

شکل 4- 27  مقایسه تغییرات توان انتقالی خط واسط در حضور مقادیر بهینه در دو ناحیه

شکل 4- 28 تغییرات توان خروجی ژنراتور سنکرون ناحیه 1

 

شکل 4- 29 تغییرات توان خروجی ژنراتور سنکرون ناحیه 2

4-7- جمع بندی

با توجه به نتایج نشان داده شده در این فصل، می توان با اطمینان خاطر بیان کرد که با اعمال برنامه های کنترلی مناسب بر تولیدات انرژی تجدیدپذیر خورشیدی و بادی، حضور آنها در شبکه لزوماً به معنای کاهش توانایی کنترل فرکانس سیستم نبوده و حتی می توان با بهره گرفتن از سیستم های ذخیره ساز انرژی ثبات و محدوده پایداری فرکانسی سیستم را تقویت بخشید.

 

 

 

 

 

 

 

 

 

 

فصل پنجم: نتیجه گیری و ارائه پیشنهادهای ممکن

 

 

 

 

 

 

 

 

 

 

 

5-1- نتیجه گیری

در پایان‌نامه حاضر، تاثیرات استفاده از منابع انرژی تجدیدپذیر نظیر تولیدات بادی و خورشیدی در شبکه قدرت مورد بررسی قرار گرفت. همانطور که ذکر شد، شبکه قدرت مشمول تغییراتی کلی در بدنه و ساختار خود است. این تغییرات را می توان منبعث از ظهور انواع جدید ادوات تولید توان، تکنولوژی‌های جدید، حجم رو به افزایش منابع انرژی تجدیدپذیر دانست. نیاز روزافزون به انرژی الکتریکی در کنار ذخیره محدود سوخت فسیلی و نگرانی روبه گسترش مشکلات زیست‌محیطی ناشی از مصرف سوخت فسیلی، ضرورت استفاده از منابع انرژی تجدیدپذیر نظیر باد و خورشید و ورود آنها را به شبکه قدرت بیش از پیش پررنگ تر می کند. با ظهور منابع انرژی تجدیدپذیر نظیر انرژی باد و خورشید، بررسی تاثیرات استفاده از این منابع در بهره‌برداری و کنترل شبکه قدرت از اهمیت زیادی برخوردار می‌گردد.

 از اینرو، تاثیرات ژنراتور دو سوء تغذیه به عنوان مدلی متداول از تولید بادی در کنترل فرکانس سیستم قدرت مورد بررسی قرار گرفت. قابلیّت پشتیبانی توان اکتیو کوتاه مدّت از طریق جذب انرژی جنبشی پره‌های توربین، به عنوان ظرفیتی جهت شرکت تولید بادی DFIG در کنترل اولیّه فرکانس دیده شد. کنترلر جدیدی برای مشارکت توربین بادی در کنترل یار فرکانس پیشنهاد شد. تابع پشتیبانی فرکانسی تولید بادی در قبال تغییرات فرکانس سیستم، توانی متناسب با تغییرات فرکانس و نرخ تغییرات فرکانس برای تزریق به شبکه فراهم کرده و لختی پنهان توربین‌های بادی را به صورت موقّت  آشکار می سازد. بدین طریق توربین های بادی DFIG در کنترل اولیّه فرکانس شرکت داده شدند.

همچنین استراتژی جدیدی برای مشارکت مزرعه خورشیدی در کنترل فرکانس سیستم دو ناحیه ای قدرت، از طریق حبس تولید تشریح شد. سیستم‌های خورشیدی بوسیله برنامه کنترلی پیشنهادی توانستند در حالت کنترل دروپ فعّالیت کرده و مشابه ژنراتورهای سنکرون پشتیبانی اولیّه فرکانس را برای سیستم قدرت تأمین نمایند.

نتایج شبیه سازی نشان داد که علاوه بر حضور موفق تولید بادی DFIG و تولید خورشیدی در کنترل فرکانس، تنش مکانیکی وارده بر توربین ژنراتورهای سنکرون در تولید متداول نیز کاهش می‌یابد.

جهت افزایش قابلیت پشتیبانی فرکانس تامین ظرفیت رزرو برای جبران کسری تولید، از ذخیره ساز باتری استفاده شد. با ترکیب همزمان استراتژی‌های کنترلی مزرعه خورشیدی و بادی در کنار استفاده از ذخیره‌ساز باتری، پاسخ دینامیکی شبکه به اغتشاش بار در دو ناحیه سیستم قدرت، مورد بهینه‌سازی قرار گرفته و با داشتن پارامتر های بهینه در شبکه، نتایج شبیه سازی تاثیر مثبت و سازنده طرح‌های کنترلی به کار رفته در کنترل فرکانس را در قیاس با پاسخ پایه شبکه، به خوبی نشان داد.

5-2- پیشنهادات

در ادامه کار حاضر و با نگاهی به سابقه تحقیق مذکور می توان پیشنهاداتی را ارائه داد:

  • اطلّاعات واقعی بادی و خورشیدی جهت استفاده در محاسبات وارد شوند. الگوی بار واقعی به عنوان اغتشاشات وارده به شبکه، مبنای کار قرار گیرند.
  • با توجه به این اطلاعات و هم چنین عنایت به این واقعیت که بهره برداری از سیستم خورشیدی می بایست توجیه اقتصادی به همراه داشته باشد، می‌بایست نقطه کاری مناسب برای بهره برداری اقتصادی از سیستم خورشیدی پیشنهاد شود.
  • باید توجّه داشت که با به اشباع رفتن تولید خورشیدی قابلیت تنظیم فرکانس آن نیز از بین خواهد رفت. در امتداد این مسیر می توان در مواقعی که تغییرات شدیدی در تابش خورشید ایجاد می شود و یا فرکانس شبکه شدیداً افت می کند طرح های کنترلی را به طرح هایی نظیر آنتی وایندآپ[7] مجهز نمود.
  • در کنار این واقع نگری ها توجه به میزان شارژ باقیمانده[8] در ذخیره‌ساز به عنوان حالت شارژ[9] نیز می تواند در محاسبات وارد نمود.

 

 

 

 

 

ضمائم

 

جدول  1مشخصات نامی سیستم قدرت مورد مطالعه

ناحیه2 ناحیه1 مقادیر نامی
60 60 فرکانس نامی (هرتز)
500 500 توان نامی (مگاوات)
5 5
1 1
0.2 0.2 ثابت زمانی گاورنر (ثانیه)
0.3 0.3 ثابت زمانی توربین(ثانیه)
7 7 ثابت زمانی بازگرمکن(ثانیه)
0.3 0.3
0.05 0.05 مشخصه تنظیم گاورنر
10 10 ضریب بایاس ناحیه
0.0856 0.0856 ضریب همگام ساز خط انتقالی
-1 _ نسبت توان نامی دو ناحیه

 

جدول 2 پارامترهای به کار رفته در الگوریتم PSO

پارامتر مقدار
   
تعداد متغیّر مسأله 6
تعداد ذرّات 10
بیشینه تکرار 50
وزن لختی .1
2
2

 

 

منابع و مراجع

[1] کراری, دینامیک و کنترل سیستم های قدرت, تهران: انتشارات دانشگاه صنعتی امیر کبیر, 1389.
[2] p. kundor, power system stability and control, new york: McGraw-Hill, 2006.
[3] H. Outhred, “Meeting the challenges of integrating renewable energy into competitive electricity industries,” 2007. [Online]. Available: http://www.reilproject.org/documents/GridIntegrationFINAL.pdf.
[4] D. o. T. a. Industry, “The energy challenge energy review report,” Department of Trade and Industry, 2006.
[5] EWIS., “Towards a successful integration of wind power into European electricity grids,” 2007. [Online]. Available: http://www.ornl.gov/~webworks/cppr/y2001/rpt/122302.pdf.
[6] A. Resources, “AWEA Resources,” 2008. [Online]. Available: http://www.awea.org.
[7] H. Xin, Z. Qu, J. Seuss and A. Maknouninejad, “A self-organizing strategy for power flow control of photovoltaic generators in a distributionnetwork,” IEEE Trans. Power Syst , vol. 26, no. 3, p. 1462–1473, 2011.
[8] G. Masson, M. Latour and D. Biancardi, “European Photovoltaic Industry Association,” May 2012. [Online]. Available: http://www.epia.org/.
[9] S. Ahmed and M.Mohsin, “Analytical determination of the control parameters for a large photovoltaic generator embedded in a grid system,” IEEE Trans. Sustain. Energy, vol. 2, no. 2, p. 122–130, Apr. 2011.
[10] 2008. [Online]. Available: http://www.iea-pvps.org/.
[11] M. Yamamoto, “National survey report of PV power applications in Japan 2009,” 2010. [Online]. Available: http://www.iea-pvps.org/countries/download/nsr09/NSR_2009_Japan_100620.pdf.
[12] Samsung, “Samsung C&T, Korea Electric Power Company to Build World’s Largest Wind, Solar Panel Cluster in Ontario,” jan 2010. [Online]. Available: http://www.samsung.com/ca/news/newsRead.do?news_seq=17081&page=1.
[13] “The Global Wind Energy Council,” 2008. [Online]. Available: http://www.gwec.net/.
[14] T. Esram and P. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers, p. 439–449, 2007.
[15] Y. Tan and D. Kirschen, “Impact on the power system of a large penetration of photovoltaic generation,” Proc. IEEE Power Eng. Soc. Gen. Meeting, p. 1–8, 2007.
[16] Y. T. Tan, “A model of PV generation suitable for stability analysis,” IEEE Trans. Energy Convers, vol. 19, no. 4, p. 748–755, 2004.
[17] W. A. Omran, “Investigation of Methods for Reduction of Power Fluctuations Generated From Large Grid-Connected Photovoltaic Systems,” IEEE Transactions On Energy Conversion, vol. 26, no. 1, 2011.
[18] N. Kakimoto, “Power Modulation of Photovoltaic Generator for Frequency Control of Power System,” IEEE Transactions On Energy Conversion, vol. 24, no. 4, 2009.
[19] C. A. Hill, “Battery Energy Storage for Enabling Integration of Distributed Solar Power Generation,” IEEE Transactions On Smart Grid, vol. 3, no. 2, 2012.
[20] R. Tonkoski, “Active power curtailment of PV inverters in diesel hybrid mini-grids,” in Proc. IEEE Electr. Power Energy Conf, 2009.
[21] M. Datta, “A frequency- control approach by photovoltaic generator in a PV-Diesel hybrid power system,” IEEE Trans. Energy Convers, vol. 26, no. 2, p. 559–571, 2011.
[22] J.-S. Park, “Operation control of photovoltaic/diesel hybrid generating system considering fluctuation of solar radiation,” Solar Energy Mater. Solar Cells, vol. 67, no. 1-4, p. 535–542, 2001.
[23] A. Jossen, “Operation conditions of batteries in PV applications,” Solar Energy, vol. 76, no. 6, p. 759–769, 2004.
[24] J. N. Ross, “Modelling battery charge regulation for a stand-alone photovoltaic system,” Solar Energy, vol. 69, no. 3, p. 181–190, 2000.
[25] S. M. Shaahid, “Economic analysis of hybrid photovoltaic-diesel-battery power systems for residential loads in hot regions: A step to clean future,” Renewable Sustainable Energy, vol. 12, p. 488–503, 2008.
[26] M. Bayoumy, “New techniques for battery charger and SOC estimation in photovoltaic hybrid power systems,” Solar Energy Mater. Solar Cells, vol. 35, no. 11, p. 509– 514, 1994.
[27] B. K. Bala, “Optimal design of a PV-diesel hybrid system for electrification of an isolated island: Sandwip in Bangladesh using genetic algorithm,” Energy Sustainable , vol. 13, p. 137–142, 2009.
[28] X. Li, “Battery Energy Storage Station (BESS)-Based Smoothing Control of Photovoltaic (PV) and Wind Power Generation Fluctuations,” IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 464-73, April 2013.
[29] H. Xin, “A New Frequency Regulation Strategy for Photovoltaic Systems Without Energy Storage,” IEEE Transactions On Sustainable Energy, vol. 4, no. 4, 2013.
[30] S. Aditya and D. Das, “Battery energy storage for load frequency control of an interconnected power system,” Electric Power Systems Research, vol. 58, p. 179–185, 2001.
[31] J. Jenkins, “Comparison of the response of doubly fed and fixedspeed induction generator wind turbines to changes in network frequency,” IEEE Trans Energy Convers, 2004.
[32] A. O’Malley, “The inertial response of induction machine based wind turbines,” IEEE Trans Power system, 2005.
[33] O. Hughes, “Contribution of DFIG-based wind farms to power system short-term frequency regulation,” Strbac GProc Inst Elect Eng، Gen Transm، Distrib., vol. 135, no. 2, 2006.
[34] J. d. H. SWH, “Wind turbines emulating inertia and supporting primary frequency control,” IEEE Trans Power Syst, vol. 21, no. 1, 2006.
[35] N. R. Ullah, “Temporary primary frequency control support by variable speed wind turbines: Potential and applications,” IEEE Trans. Power Syst, vol. 23, no. 2, p. 601–12, 2008.
[36] P. Bhatt, “Dynamic participation of doubly fed induction generator in automatic generation control,” Renewable Energy, vol. 36, 2011.
[37] H. Bevrani, Robust power system frequency control, New York: Springer, 2009.
[38] H. Banakar, “Impacts of wind power minute to minute variation on power system,” IEEE Trans. Power Syst., vol. 23, no. 1, p. 150–60, 2008.
[39] G. Lalor, “Frequency control and wind turbine technology,” IEEE Trans. Power Syst., vol. 20, no. 4, p. 1905–13, 2005.
[40] J. Morren, S. W. H. d. Haan and W. L. Kling, “Wind turbine emulating inertia and supporting primary frequency control,” IEEE Trans. Power Syst, p. 433–34, 2006.
[41] C. Luo, H. G. Far and H. Banakar, “Estimation of wind penetration as limited by frequency deviation,” IEEE Trans. Energy Conversion, vol. 22, no. 2, p. 783–91, 2007.
[42] P. Rosas, “Dynamic influences of wind power on the power system.,” Technical University of Denmark. PhD dissertation، , 2003.
[43] P. R. Daneshmand, “Power system frequency control in the presence of wind turbines,” Department of Computer and Electrical Engineering، University of Kurdistan. , Master’s thesis, 2010.
[44] J. L. R. Amenedo, S. Arnalte and J. C. Burgos, “Automatic generation control of a wind farm with variable speed wind turbines.,” IEEE Trans. Energy Conversion, vol. 17, no. 2, p. 279–84, 2002.
[45] R. Doherty, H. Outhred and M. O’Malley, “Establishing the role that wind generation may have in future generation portfolios,” IEEE Trans. Power Syst., vol. 21, p. 1415–22, 2006.
[46] H. Holttinen, “Impact of hourly wind power variation on the system operation in the Nordic countries,” Wind Energy, vol. 8, no. 2, p. 197–218, 2005.
[47] A. Mullane and M.O’Malley, “The inertial response of induction machine based wind turbines,” IEEE Trans. Power. Syst., p. 1496–1503, 2005.
[48] J. Ekanayake and N. Jenkins, “Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency,” IEEE Trans. Energy Convers., p. 800–802, 2004.
[49] G. Lalor, A. Mullane and a. M. O’Malley, “Frequency control and wind turbine technologies,” IEEE Trans. Power. Syst., p. 1905–1913, 2005.
[50] F. M. H. N. J. a. G. S. O. Anaya-Lara, “Contribution of DFIG-based wind farms to power system short-term frequency regulation,” Proc. Inst. Elect. Eng., Gen., Transm., Distrib, p. 164–170, 2006.
[51] S. W. H. d. H. W. L. K. a. J. A. F. J. Morren, “Wind turbines emulating inertia and supporting primary frequency control,” IEEE Trans. Power. Syst., p. 433–434, 2006.
[52] F. V. Hulle, “Large Scale Integration of Wind Energy in the European Power Supply: Analysis, Issues and Recommendations, European Wind Energy Association (EWEA),” Tech. Rep, 2005.
[53] J. J. S.-G. W. W. P. a. R. W. D. N. W. Miller, “Dynamic modeling of GE1.5 and 3.6M Wwind turbine-generators for stability simulations,” IEEE Power Eng. Soc. General Meeting, p. 1977–1983, 2003.
[54] W. W. P. a. J. J. S.-G. N. W. Miller, “Dynamic Modeling of GE 1.5 and 3.6Wind Turbine-Generators,” GE—Power System Energy Consulting, 2003.
[55] E. D. A. Spera, Wind Turbine Technology, NewYork: ASME, 1994..
[56] V. Akhmatov, “Analysis of dynamic behaviour of electric power systems with large amount of wind power,” Ph.D. dissertation Tech. Univ. Denmark,, 2003.
[57] M. L. Chan, “Dynamic Equivalents for Average System Frequency Behavior Following Major Disturbances,” IEEE Trans Power App Syst, pp. 1637-42, 1971.
[58] M. Datta, “A Frequency-Control Approach by Photovoltaic Generator in a PV–Diesel Hybrid Power System,” IEEE Transactions on Energy Conversion, vol. 26, no. 2, pp. 559-7, 2011.
[59] E. Cate, K. Hemmaplardh, J. Manke and a. D. Gelopulos, “Time frame notion and time response of themodels in transient, mid-term and longterm stability programs,” IEEE Trans. Power App. Syst , vol. 103, no. 1, p. 143–151, 1984.
[60] P. Li, B. François, P. Degobert and B. Robyns, “Power control strategy of a photovoltaic power plant for microgrid applications,” in ISES World Congr, 1611–1616.
[61] Y. Liu, K. Ying, Z. Lu, H. Xin and D. Gan, “A Newton quqdratic interpolation based control strategy for photovoltaic system,” in Int. Conf. Sustainable Power Gener. Supply, 2012 .
[62] E. Cate, K. Hemmaplardh, J. Manke and D. Gelopulos, “Time frame notion and time response of themodels in transient, mid-term and longterm stability programs,” IEEE Trans. Power App. Syst., vol. 103, no. 1, p. 143–151, 1984.
[63] S. Tarbouriech and M. Turner, “Anti-windup design: An overview of some recent advances and open problems,” IET Control Theory Appl, vol. 3, no. 1, p. 1–19, 2009.
[64] D. Kottick, M. Blau and D. Edelstein, “Battery Energy Storage for Frequency Regulation,” IEEE Transactions on Energy Conversion, vol. 8, no. 3, September 1993.
[65] S. Aditya and D. Das, “Battery energy storage for load frequency control of an interconnected power system,” Electric Power Systems Research, vol. 58 , p. 179–185, 2001.
[66] H. Kunisch, K. Kramer and H. Dominik, “Battery energy storage, another option for load frequency control and instantaneous reserve,,” IEEE Trans. Energy Conversions, p. 41–46, 1986.
[67] W. V. KleinSmid, “Chino battery, an operations and maintenance update,,” in Third International Conference on Batteries for Utility Energy Storage, Kobe, Japan, 1991.
[68] K. J and E. RC, “Particle swarm optimization,” in Proceedings of IEEE international conference on neural networks, Perth, Australia, 1995.
[69] K. Ogatta, Modern control engineering, New York: USA: Prentice Hall.

 

 

 

 

 

 

 

 

 

 

 


Abstract

The main task of any power system is to generate high quality power to supply demand’s load. Any frequency deviation more than permissible value causes damage to components, overloading tie lines, deficits and deficiencies of relays and in worst case may lead power system to collapse. The important goal of Load Frequency Control (LFC) is to eliminate frequency deviations as quick as possible. Meanwhile reducing tie line’s power deviations and returning tie line’s power to scheduled values is important too. These two are the main tasks of Automatic Generation Control (AGC).

Today power system is experiencing structural changes. Not because of deregulating Environment and competitive policies but also because of new power generating units with new frameworks, technologies and increasing penetration levels of Renewable Energy Resources (RERs). Increasing growth of demand’s load beside of ceasing reserves of oil and global warming issues are made RERs a desirable option. By integrations of RERs into power system, aside economical point of view, load frequency control of power system will play more important role in maintaining the quality of such a system.

Hence, in other to increase petrification of RERs in frequency support, new control strategies are needed. In this thesis at first, the impacts of integration of RERs in power system are studied. And then new strategies has been proposed to participate RERs in load frequency control and to improve frequency regulation’s capability of power system in presence of RERs.

 

Keywords: Automatic Generation Control (AGC), Renewable Energy Resources (RERs), Photovoltaic Generation, Wind Generation, Energy Storage Systems (ESS).

 

 

 

 

 

 

 

 

 

 

 

Mazandaran University of Science and Technology

Faculty of Electrical Engineering

 

Thesis for master’s degree in power engineering

 

 

Automatic generation control of power system in presence of Renewable Energy Resources (RERs)

 

 

By:

Behzad Moradi

 

Supervisor:

Dr. Abdolreza Sheikholeslami

 

Advisor:

Roya Ahmadi

 

 

2014

[1] Maximum Power Point Tracking

[2] Robustness

[3] Torque Set-point

[4] Superconductive Magnetic Energy Storage

[5] Inertia

[6] Modal

[7] Anti-Windup

[8] State of Charge

[9] State of Charge

 

 

استثنائا” این فایل

متن کامل موجود نداریم

پایان نامه رشته مدیریت: ارائه مدلی جهت انتخاب تامین کننده لجستیک معکوس با بهره گرفتن از رویکرد تلفیقی تکنیک گروهی DEMATEL و VIKOR در محیط فازی

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مدیریت صنعتی

گرایش : تولید

عنوان : ارائه مدلی جهت انتخاب تامین کننده لجستیک معکوس با بهره گرفتن از رویکرد تلفیقی تکنیک گروهی DEMATEL و VIKOR در محیط فازی

Continue reading “پایان نامه رشته مدیریت: ارائه مدلی جهت انتخاب تامین کننده لجستیک معکوس با بهره گرفتن از رویکرد تلفیقی تکنیک گروهی DEMATEL و VIKOR در محیط فازی”

پایان نامه مهندسی صنایع گرایش صنایع: پیکربندی چند هدفه زنجیره تامین در فضای عدم قطعیت

متن کامل پایان نامه با فرمت ورد

پایان نامه مقطع کارشناسی ارشد رشته صنایع

دانشگاه صنعتی خواجه نصیرالدین طوسی

دانشکده مهندسی صنایع

پایان‌نامه كارشناسی ارشد رشته مهندسی صنایع

گرایش صنایع

عنوان:

پیکربندی چند هدفه زنجیره تامین در فضای عدم قطعیت

استاد راهنما:

دکترعبدالله آقایی

Continue reading “پایان نامه مهندسی صنایع گرایش صنایع: پیکربندی چند هدفه زنجیره تامین در فضای عدم قطعیت”